Table of Contents
International Journal of Nuclear Energy
Volume 2013, Article ID 491898, 9 pages
Research Article

Study of Thorium Fuel Cycles for Light Water Reactor VBER-150

1Instituto Superior de Tecnologías y Ciencias Aplicadas (InSTEC), Avenida Salvador Allende y Luaces, Quinta de Los Molinos, Plaza de la Revolución, 10400 La Habana, Cuba
2Departamento de Energia Nuclear—UFPE, Cidade Universitária, Avenida Professor Luiz Freire 1000 Recife, PE, Brazil
3Corporación Nuclear Eléctrica Chile S. A., (CNE Chile), Latadia, Las Condes, 4250 Santiago, Chile

Received 30 September 2013; Revised 11 November 2013; Accepted 12 November 2013

Academic Editor: Arkady Serikov

Copyright © 2013 Daniel Evelio Milian Lorenzo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The main objective of this paper is to examine the use of thorium-based fuel cycle for the transportable reactors or transportable nuclear power plants (TNPP) VBER-150 concept, in particular the neutronic behavior. The thorium-based fuel cycles included Th232+Pu239, Th232+U233, and Th232+U and the standard design fuel UOX. Parameters related to the neutronic behavior such as burnup, nuclear fuel breeding, MA stockpile, and Pu isotopes production (among others) were used to compare the fuel cycles. The Pu transmutation rate and accumulation of Pu with MA in the spent fuel were compared mutually and with an UOX open cycle. The Th232+U233 fuel cycle proved to be the best cycle for minimizing the production of Pu and MA. The neutronic calculations have been performed with the well-known MCNPX computational code, which was verified for this type of fuel performing calculation of the IAEA benchmark announced by IAEA-TECDOC-1349.