Table of Contents
International Journal of Navigation and Observation
Volume 2013 (2013), Article ID 570964, 13 pages
http://dx.doi.org/10.1155/2013/570964
Research Article

Kalman Filter-Based Hybrid Indoor Position Estimation Technique in Bluetooth Networks

1National University of Modern Languages, Sector H-9/1, Islamabad-44000, Pakistan
2Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia

Received 7 June 2013; Revised 22 July 2013; Accepted 29 July 2013

Academic Editor: Sandro Radicella

Copyright © 2013 Fazli Subhan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Forno, G. Malnati, and G. Portelli, “Design and implementation of a bluetooth ad hoc network for indoor positioning,” IEE Proceedings: Software, vol. 152, no. 5, pp. 223–228, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Mao, B. Fidan, and B. D. O. Anderson, “Wireless sensor network localization techniques,” Computer Networks, vol. 51, no. 10, pp. 2529–2553, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. M. P. Kodde, “Bluetooth communication and positioning for location based services,” Report For the Course Location Based Services, TU-Delft, The Netherlands, 2005. View at Google Scholar
  4. K. Nguyen, Robot-based evaluation of bluetooth fingerprinting [M.S. thesis], Queens' College Computer Laboratory, University of Cambridge, UK, 2011.
  5. Bluetooth Special Intrest Group, “Fast-facts,” 2011.
  6. B. Li, A. Dempster, C. Rizos, and J. Barnes, “Hybrid method for localization using wlan,” in Proceedings of the International Conferene on Spatial Intelligence, Innovation and Praxis, pp. 297–303.
  7. L. Dong and W. Jiancheng, “Research of indoor local positioning based on bluetooth technology,” in Proceedings of the 5th International Conference on Wireless Communications, Networking and Mobile Computing, (WiCOM '09), Beijing, China, September 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Sugano, T. Kawazoe, Y. Ohta, and M. Murata, “Indoor localization system using RSSI measurement of wireless sensor network based on ZigBee standard,” in Proceedings of the International Conference on Wireless Sensor Networks (IASTED '06), p. 6s, Alberta, Canada, July 2006. View at Scopus
  9. L. Peneda, A. Azenha, and A. Carvalho, “Trilateration for indoors positioning within the framework of wireless communications,” in Proceedings of the 35th Annual Conference of the IEEE Industrial Electronics Society (IECON '09), pp. 2732–2737, Porto, Portugal, November 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Hightower and G. Borriello, “Location systems for ubiquitous computing,” Computer, vol. 34, no. 8, pp. 57–66, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Zhang, F. Xia, Z. Yang, L. Yao, and W. Zhao, “Localization technologies for indoor human tracking,” in Proceedings of the 5th International Conference on Future Information Technology (FutureTech '10), Busan, Republic of Korea, May 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Zhou and J. K. Pollard, “Position measurement using bluetooth,” IEEE Transactions on Consumer Electronics, vol. 52, no. 2, pp. 555–558, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Yang and Y. Chen, “Indoor localization using improved rss-based lateration methods,” in Proceedings of the IEEE Global Telecommunications Conference GLOBECOM '09), Honolulu, Hawaii, USA, December 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Alippi and G. Vanini, “A RSSI-based and calibrated centralized localization technique for wireless sensor networks,” in Proceedings of the 4th Annual IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom '06), pp. 306–311, Pisa, Italy, March 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. E.-E. Lau and W.-Y. Chung, “Enhanced RSSI-based real-time user location tracking system for indoor and outdoor environments,” in Proceedings of the 2nd International Conference on Convergent Information Technology (ICCIT '07), pp. 1213–1218, Republic of Korea, November 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. W. Xinwei, B. Ole, L. Rainer, and P. Steffen, “Localization in wireless ad-hoc sensor networks using multilateration with RSSI for logistic applications,” Procedia Chemistry, vol. 1, no. 1, pp. 461–464, 2009. View at Google Scholar
  17. A. V. Bosisio, “Performances of an RSSI-based positioning and tracking algorithm,” in Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN '11), Guimaraes, Portugal, September 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Boukerche, H. A. B. F. Oliveira, E. F. Nakamura, and A. A. F. Loureiro, “Localization systems for wireless sensor networks,” IEEE Wireless Communications, vol. 14, no. 6, pp. 6–12, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Pandey and P. Agrawal, “Distance measurement model based on RSSI in wsn,” Wireless Sensor Network, Scientific Research, vol. 29, no. 7, pp. 606–6011, 2010. View at Google Scholar
  20. H. Jeffrey and B. Gaetano, “Location sensing techniques,” Tech. Rep. UW CSE, 2001-07- 30, vol. 34, 2001. View at Google Scholar
  21. R. M. Pellegrini, S. Persia, D. Volponi, and G. Marcone, “RF propagation analysis for ZigBee Sensor Network using RSSI measurements,” in Proceedings of the 2nd International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace and Electronic Systems Technology (Wireless VITAE '11), Chennai, India, March 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. S. William and J. Murphy, Determination of a position using approximate distances and trilateration [M.S. thesis], Trustees of the Colorado School of Mines, Colo, USA, 2007.
  23. K. Langendoen and N. Reijers, “Distributed localization in wireless sensor networks: a quantitative comparison,” Computer Networks, vol. 43, no. 4, pp. 499–518, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Goldoni, A. Savioli, M. Risi, and P. Gamba, “Experimental analysis of RSSI-based indoor localization with IEEE 802.15.4,” in Proceedings of the European Wireless Conference (EW '10), pp. 71–77, Lucca, Italy, April 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. X. Kuang and H. Shao, “Maximum likelihood localization algorithm using wireless sensor networks,” in Proceedings of the 1st International Conference on Innovative Computing, Information and Control (ICICIC '26), pp. 263–266, 2003.
  26. G. Zanca, F. Zorzi, A. Zanella, and M. Zorzi, “Experimental comparison of RSSI-based localization algorithms for indoor wireless sensor networks,” in Proceedings of the 3rd Workshop on Real-World Wireless Sensor Networks (REALWSN '08), pp. 1–5, April 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Priwgharm and P. Chemtanomwong, “A comparative study on indoor localization based on RSSI measurement in wireless sensor network,” in Proceedings of the 8th International Joint Conference on Computer Science and Software Engineering (JCSSE '11), pp. 1–6, May 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Wang and X. Li, “Sensor localization under limited measurement capabilities,” IEEE Network, vol. 21, no. 3, pp. 16–23, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Yim, S. Jeong, K. Gwon, and J. Joo, “Improvement of Kalman filters for WLAN based indoor tracking,” Expert Systems with Applications, vol. 37, no. 1, pp. 426–433, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. P. Bahl and V. N. Padmanabhan, “RADAR: an in-building RF-based user location and tracking system,” in Proceedings of the 19th Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE INFOCOM '00), pp. 775–784, March 2000. View at Scopus
  31. W. Liu, S. Gong, Y. Zhou, and P. Wang, “Two-phase indoor positioning technique in wireless networking environment,” in Proceedings of the 2010 IEEE International Conference on Communications (ICC '10), Cape Town, South Africa, May 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. X. Nguyen and T. Rattentbury, “Localization algorithms for sensor networks using RF signal strength,” Tech. Rep., University of California at Berkeley, 2003. View at Google Scholar
  33. J. Xu, H. Luo, F. Zhao, R. Tao, and Y. Lin, “Dynamic indoor localization techniques based on RSSI in WLAN environment,” in Proceedings of the 6th International Conference on Pervasive Computing and Applications (ICPCA '11), pp. 417–421, Port Elizabeth, South Africa, October 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Lloret, J. Tomas, M. Garcia, and A. Canovas, “A hybrid stochastic approach for self-location of wireless sensors in indoor environments,” Sensors, vol. 9, no. 5, pp. 3695–3712, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Wang and F. Jia, “A hybrid modeling for WLAN positioning system,” in Proceedings of the International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM '07), pp. 2152–2155, Shanghai, China, September 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Lloret, J. Tomas, M. Garcia, and A. Canovas, “A hybrid stochastic approach for self-location of wireless sensors in indoor environments,” Sensors, vol. 9, no. 5, pp. 3695–3712, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Antti, H. Marko, L. Helena, and H. Timo, “Experiments on local positioning with bluetooth,” in Proceedings of the International Conference on Information Technology: Computers and Communications, pp. 297–303, IEEE Computer Society, 2003.
  38. W. Ting and B. Scott, “Indoor localization method comparison: fingerprinting and trilateration algorithm,” International Journal of Control. In press.
  39. W. Ting and B. Scott, “Indoor localization method comparison: fingerprinting and trilateration algorithm,” http://rose.geog.mcgill.ca/ski/system/files/fm/2011/Wei.pdf.
  40. R. Priwgharm and P. Chemtanomwong, “A comparative study on indoor localization based on RSSI measurement in wireless sensor network,” in Proceedings of the 8th International Joint Conference on Computer Science and Software Engineering (JCSSE '11), pp. 1–6, Nakhon Pathom, Thailand, May 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. B. Deen, A software solution for absolute position estimation using wlan for robotics [M.S. thesis], EEMCS/Electrical Engineering Control Engineeringy, University of Twente, Netherlands, 2008.
  42. National Academy of Engineering, “Biography of Rudolf Kalman,” 2011.
  43. K. Murphy, “Kalman filter toolbox for matlab,” 2004.
  44. B. Dawes and K.-W. Chin, “A comparison of deterministic and probabilistic methods for indoor localization,” Journal of Systems and Software, vol. 84, no. 3, pp. 442–451, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. A. K. M. M. Hossain and W.-S. Soh, “A comprehensive study of bluetooth signal parameters for localization,” in Proceedings of the 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC '07), Athens, Greece, September 2007. View at Publisher · View at Google Scholar · View at Scopus