Table of Contents
International Journal of Oceanography
Volume 2013 (2013), Article ID 482451, 6 pages
http://dx.doi.org/10.1155/2013/482451
Research Article

Marine Environmental Risk Assessment of Sungai Kilim, Langkawi, Malaysia: Heavy Metal Enrichment Factors in Sediments as Assessment Indexes

Centre of Ocean Research, Conservation & Advances (ORCA), Division of Research, Industrial Linkage, Community Network & Alumni, Universiti Teknologi MARA, 02600 Arau, Perlis, Malaysia

Received 4 December 2012; Revised 12 February 2013; Accepted 13 May 2013

Academic Editor: Heinrich Hühnerfuss

Copyright © 2013 Jamil Tajam and Mohd Lias Kamal. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. M. Idris, “Combining multivariate analysis and geochemical approaches for assessing heavy metal level in sediments from Sudanese harbors along the Red Sea coast,” Microchemical Journal, vol. 90, no. 2, pp. 159–163, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Demirak, F. Yilmaz, A. Levent Tuna, and N. Ozdemir, “Heavy metals in water, sediment and tissues of Leuciscus cephalus from a stream in southwestern Turkey,” Chemosphere, vol. 63, no. 9, pp. 1451–1458, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. J. M. Casas, H. Rosas, M. Solé, and C. Lao, “Heavy metals and metalloids in sediments from the Llobregat basin, Spain,” Environmental Geology, vol. 44, no. 3, pp. 325–332, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. K. P. Singh, D. Mohan, V. K. Singh, and A. Malik, “Studies on distribution and fractionation of heavy metals in Gomti river sediments—a tributary of the Ganges, India,” Journal of Hydrology, vol. 312, no. 1–4, pp. 14–27, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Mwamburi, “Variations in trace elements in bottom sediments of major rivers in Lake Victoria's basin, Kenya,” Lakes and Reservoirs: Research and Management, vol. 8, no. 1, pp. 5–13, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Tessier and P. G. C. Campbell, “Partitioning of trace metals in sediments: relationships with bioavailability,” Hydrobiologia, vol. 149, no. 1, pp. 43–52, 1987. View at Publisher · View at Google Scholar · View at Scopus
  7. N. W. Chan, “Protecting and conserving our natural heritage: potentials, threats and challenges of Langkawi Geopark,” in Proceedings of the International Conference World Civic Forum, Seoul, South Korea, May 2009.
  8. S. Tsugonai and M. Yamada, “226Ra in Bering sea sediment and its application as a geochronometer,” Geochemical Journal, vol. 13, pp. 231–238, 1980. View at Google Scholar
  9. B. Y. Kamaruzzaman, Geochemistry or the marine sediments. Its paleoceanographic significance [Ph.D. thesis], Hokkaido University, 1999.
  10. T. Jamil, Physicochemical and sediment characteristics of the bottom sediment of Terengganu River, Terengganu Malaysia [M.S. thesis], Kolej Universiti Sains dan Teknologi Malaysia, 2006.
  11. D. L. Trimm, H. H. Beiro, and S. J. Parker, “Comparison of digestion techniques in analyses for total metals in marine sediments,” Bulletin of Environmental Contamination and Toxicology, vol. 60, no. 3, pp. 425–432, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Chen and L. Q. Ma, “Comparison of three aqua regia digestion methods for twenty Florida soils,” Soil Science Society of America Journal, vol. 65, no. 2, pp. 491–499, 2001. View at Google Scholar · View at Scopus
  13. J. M. Deely and J. E. Fergusson, “Heavy metal and organic matter concentrations and distributions in dated sediments of a small estuary adjacent to a small urban area,” The Science of the Total Environment, vol. 153, no. 1-2, pp. 97–111, 1994. View at Publisher · View at Google Scholar · View at Scopus
  14. L. F. Niencheski, H. L. Windom, and R. Smith, “Distribution of particulate trace metal in Patos Lagoon estuary (Brazil),” Marine Pollution Bulletin, vol. 28, no. 2, pp. 96–102, 1994. View at Publisher · View at Google Scholar · View at Scopus
  15. K. D. Daskalakis and T. P. O'Connor, “Normalization and elemental sediment contamination in the coastal United States,” Environmental Science and Technology, vol. 29, no. 2, pp. 470–477, 1995. View at Google Scholar · View at Scopus
  16. V. T. Breslin and S. A. Sañudo-Wilhelmy, “High spatial resolution sampling of metals in the sediment and water column in Port Jefferson Harbor, New York,” Estuaries, vol. 22, no. 3, pp. 669–680, 1999. View at Google Scholar · View at Scopus
  17. H. L. Windom, S. J. Schropp, F. D. Calder et al., “Natural trace metal concentrations in estuarine and coastal marine sediments of the Southeastern United States,” Environmental Science and Technology, vol. 23, no. 3, pp. 314–320, 1989. View at Google Scholar · View at Scopus
  18. S. Covelli and G. Fontolan, “Application of a normalization procedure in determining regional geochemical baselines,” Environmental Geology, vol. 30, no. 1-2, pp. 34–45, 1997. View at Publisher · View at Google Scholar · View at Scopus
  19. V. Simeonov, D. L. Massart, G. Andreev, and S. Tsakovski, “Assessment of metal pollution based on multivariate statistical modeling of “hot spot” sediments from the Black Sea,” Chemosphere, vol. 41, no. 9, pp. 1411–1417, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Zhang, X. Ye, H. Feng et al., “Heavy metal contamination in western Xiamen Bay sediments and its vicinity, China,” Marine Pollution Bulletin, vol. 54, no. 7, pp. 974–982, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. R. S. Carmichael, CRC Practical Handbook of Physical Properties of Rocks and Minerals, CRC Press, Boca Raton, Fla, USA, 1989.
  22. I. Bodek, W. J. Lyman, W. F. Reehl, and D. H. Rosenblatt, Environmental Inorganic Chemistry, Pergamon Press, New York, NY, USA, 1988.
  23. A. B. Ronov and A. A. Yaroshevsky, “Earth's crust geochemistry,” in Encyclopedia of Geochemistry and Environmental Sciences, R. W. Fairbridge, Ed., Van Nostrand, New York, NY, USA, 1969. View at Google Scholar
  24. D. R. Lide, CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, Fla, USA, 85th edition, 2005.
  25. R. A. Sutherland, “Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii,” Environmental Geology, vol. 39, no. 6, pp. 611–627, 2000. View at Google Scholar · View at Scopus
  26. D. T. Rickard and J. O. Niagru, “Aqueous environmental chemistry of lead,” in The Biochemistry of Lead in the Environment: Part A. Ecological Cycles, pp. 219–284, Elsevier, Amsterdam, The Netherlands, 1978. View at Google Scholar
  27. F. L. L. Muller, “Colloid/solution partitioning of metal-selective organic ligands, and its relevance to Cu, Pb and Cd cycling in the firth of Clyde,” Estuarine, Coastal and Shelf Science, vol. 46, no. 3, pp. 419–437, 1998. View at Publisher · View at Google Scholar · View at Scopus
  28. M. A. Williamson, “Iron,” in Encyclopedia of Geochemistry, C. P. Marshall and R. W. Fairbridge, Eds., pp. 348–353, Kluwer Academic, Dordrecht, Germany, 1999. View at Google Scholar
  29. S. Miko, M. Kuhta, and S. Kapelj, “Environmental baseline geochemistry of sediments and percolating waters in the Modric Cave, Croatia,” Acta Carsologica, vol. 31, no. 1, pp. 135–149, 2002. View at Google Scholar
  30. A. P. Davis, M. Shokouhian, and S. Ni, “Loading estimates of lead, copper, cadmium, and zinc in urban runoff from specific sources,” Chemosphere, vol. 44, no. 5, pp. 997–1009, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. N. Roney, V. Cassandra, M. Williams, M. Osier, and S. J. Paikoff, Toxicological Profile for Zinc, U.S. Department Of Health And Human Services Public Health Service Agency for Toxic Substances and Disease Registry, 2005.
  32. NAS, “Inorganic solutes,” in Drinking Water and Health, vol. 1, pp. 205–229, National Academy of Sciences; National Academy Press, Washington, DC, USA, 1977. View at Google Scholar
  33. F. Monaci and R. Bargagli, “Barium and other trace metals as indicators of vehicle emissions,” Water, Air, and Soil Pollution, vol. 100, no. 1-2, pp. 89–98, 1997. View at Google Scholar · View at Scopus
  34. O. M. Faroon, H. Abadin, S. Keith et al., Toxicological Profile for Cobalt, U.S. Department of Health and Human Services Public Health Service Agency for Toxic Substances and Disease Registry, 2004.
  35. S. J. Naylor, R. D. Moccia, and G. M. Durant, “The chemical composition of settleable solid fish waste (Manure) from commercial rainbow trout farms in Ontario, Canada,” North American Journal of Aquaculture, vol. 61, no. 1, pp. 21–26, 1999. View at Google Scholar · View at Scopus
  36. D. S. Lee, J. A. Garland, and A. A. Fox, “Atmospheric concentrations of trace elements in urban areas of the United Kingdom,” Atmospheric Environment, vol. 28, no. 16, pp. 2691–2713, 1994. View at Publisher · View at Google Scholar · View at Scopus
  37. B. J. Alloway, Heavy Metals in Soils, Blackie Academic and Professional, Glasgow, UK, 2nd edition, 1995.
  38. C. D. Dong, C. F. Chen, M. S. Ko, and C. W. Chen, “Enrichment, accumulation and ecological risk evaluation of cadmium in the surface sediments of Jen-Gen River Estuary, Taiwan,” International Journal of Chemical Engineering and Applications, vol. 3, no. 6, pp. 370–373, 2012. View at Google Scholar
  39. C. W. Chen, C. F. Chen, and C. D. Dong, “Contamination and potential ecological risk of mercury in sediments of Kaohsiung River mouth, Taiwan,” International Journal of Environmental Science and Development, vol. 3, pp. 66–71, 2012. View at Google Scholar
  40. Y. Kamaruzzaman and M. C. Ong, “Geochemical proxy of some chemical elements in sediments of kemaman river Estuary, Terengganu, Malaysia,” Sains Malaysiana, vol. 38, no. 5, pp. 631–636, 2009. View at Google Scholar · View at Scopus
  41. A. K. Ahmad, I. Mushrifah, and M. Shuhaimi-Othman, “Water quality and heavy metal concentrations in sediment of Sungai Kelantan, Kelantan, Malaysia: a baseline study,” Sains Malaysiana, vol. 38, no. 4, pp. 435–442, 2009. View at Google Scholar · View at Scopus
  42. B. Y. Kamaruzzaman, N. T. Shuhada, B. Akbar et al., “Spatial concentrations of lead and copper in bottom sediments of Langkawi Coastal Area, Malaysia,” Research Journal of Environmental Sciences, vol. 5, pp. 179–186, 2011. View at Publisher · View at Google Scholar
  43. B. G. Muhammad, N. A. S. Wan, and I. Mohd, “Sebaran logam berat dalam lembangan sungai semenyih,” in Proceedings of the Regional Symposium on Environment and Natural Resources, vol. 1, pp. 595–602, Kuala Lumpur, Malaysia, April 2002.
  44. C. K. Yap and B. H. Pang, “Assessment of Cu, Pb, and Zn contamination in sediment of north western Peninsular Malaysia by using sediment quality values and different geochemical indices,” Environmental Monitoring and Assessment, vol. 183, no. 1–4, pp. 23–39, 2011. View at Publisher · View at Google Scholar · View at Scopus