Table of Contents
International Journal of Oceanography
Volume 2013 (2013), Article ID 691767, 7 pages
http://dx.doi.org/10.1155/2013/691767
Research Article

Numerical Modeling of the Interaction of Solitary Waves and Submerged Breakwaters with Sharp Vertical Edges Using One-Dimensional Beji & Nadaoka Extended Boussinesq Equations

1Department of Marine Technology, Amirkabir University of Technology, Hafez Avenue No. 424, P.O. Box 15875-4413, Tehran, Iran
2Civil Engineering Group, Islamic Azad University, Maymand, Iran

Received 1 March 2013; Accepted 24 April 2013

Academic Editor: Grant Bigg

Copyright © 2013 Mohammad H. Jabbari et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. H. Peregrine, “Calculations of the development of an undular bore,” Journal of Fluid Mechanics, vol. 25, no. 2, pp. 321–330, 1966. View at Google Scholar
  2. J. M. Witting, “A unified model for the evolution nonlinear water waves,” Journal of Computational Physics, vol. 56, no. 2, pp. 203–236, 1984. View at Google Scholar · View at Scopus
  3. P. A. Madsen, R. Murray, and O. R. Sørensen , “A new form of the Boussinesq equations with improved linear dispersive properties,” Coastal Engineering, vol. 15, pp. 371–388, 1991. View at Google Scholar
  4. M. B. Abbott, A. D. McCowan, and I. R. Warren, “Accuracy of short-wave numerical models,” Journal of Hydraulic Engineering, vol. 110, no. 10, pp. 1287–1301, 1984. View at Google Scholar · View at Scopus
  5. O. Nwogu, “Alternative form of Boussinesq equations for nearshore wave propagation,” Journal of Waterway, Port, Coastal & Ocean Engineering, vol. 119, no. 6, pp. 618–638, 1993. View at Google Scholar · View at Scopus
  6. S. Beji and K. Nadaoka, “A formal derivation and numerical modelling of the improved boussinesq equations for varying depth,” Ocean Engineering, vol. 23, no. 8, pp. 691–704, 1996. View at Publisher · View at Google Scholar · View at Scopus
  7. D. H. Peregrine, “Long waves on a beach,” Journal of Fluid Mechanics, vol. 27, pp. 815–827, 1967. View at Google Scholar
  8. H. A. Schäffer, P. A. Madsen, and R. Deigaard, “A Boussinesq model for waves breaking in shallow water,” Coastal Engineering, vol. 20, no. 3-4, pp. 185–202, 1993. View at Google Scholar · View at Scopus
  9. S. Beji and J. A. Battjes, “Numerical simulation of nonlinear wave propagation over a bar,” Coastal Engineering, vol. 23, no. 1-2, pp. 1–16, 1994. View at Google Scholar · View at Scopus
  10. M. W. Dingemans, “Comparison of computations with Boussinesq-like models and laboratory measurements,” Technical Report H1684.12, MAST G8M Coastal Morphodynamics Research Programme, 1994. View at Google Scholar
  11. G. Wei and J. T. Kirby, “Time-dependent numerical code for extended Boussinesq equations,” Journal of Waterway, Port, Coastal & Ocean Engineering, vol. 121, no. 5, pp. 251–261, 1995. View at Google Scholar · View at Scopus
  12. T. Ohyama, W. Kioka, and A. Tada, “Applicability of numerical models to nonlinear dispersive waves,” Coastal Engineering, vol. 24, no. 3-4, pp. 297–313, 1995. View at Google Scholar · View at Scopus
  13. Ge Wei, J. T. Kirby, S. T. Grilli, and R. Subramanya, “A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves,” Journal of Fluid Mechanics, vol. 294, pp. 71–92, 1995. View at Google Scholar · View at Scopus
  14. D. Ambrosi and L. Quartapelle, “A Taylor-Galerkin method for simulating nonlinear dispersive water waves,” Journal of Computational Physics, vol. 146, no. 2, pp. 546–569, 1998. View at Google Scholar · View at Scopus
  15. M. Walkley and M. Berzins, “A finite element method for the one-dimensional extended Boussinesq equations,” International Journal For Numerical Methods in Fluids, vol. 29, pp. 143–157, 1999. View at Google Scholar
  16. Y. S. Li, S. X. Liu, Y. X. Yu, and G. Z. Lai, “Numerical modeling of Boussinesq equations by finite element method,” Coastal Engineering, vol. 37, no. 2, pp. 97–122, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Walkley and M. Berzins, “A finite element method for the two-dimensional extended Boussinesq equations,” International Journal for Numerical Methods in Fluids, vol. 39, no. 10, pp. 865–886, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. O. R. Sørensen, H. A. Schäffer, and L. Sørensen, “Boussinesq type modeling using an unstructured finite element technique,” Coastal Engineering, vol. 50, pp. 181–198, 2004. View at Google Scholar
  19. S. B. Woo and P. L. F. Liu, “Finite-element model for modified Boussinesq equations. II: applications to nonlinear harbor oscillations,” Journal of Waterway, Port, Coastal and Ocean Engineering, vol. 130, no. 1, pp. 17–28, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Lin and C. Man, “A staggered-grid numerical algorithm for the extended Boussinesq equations,” Applied Mathematical Modelling, vol. 31, no. 2, pp. 349–368, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Ghadimi, M. H. Jabbari, and A. Reisinezhad, “Calculation of solitary wave shoaling on plane beaches by extended Boussinesq equations,” Engineering Applications of Computational Fluid Mechanics, vol. 2, no. 2, pp. 1–29, 2012. View at Google Scholar
  22. S. Liu, Z. Sun, Li, and j, “An unstructured FEM model based on Boussinesq equations and its application to the calculation of multidirectional wave run-up in a cylinder group,” Applied Mathematical Modelling, vol. 36, no. 9, pp. 4146–4164, 2011. View at Google Scholar
  23. C. L. Ting, M. C. Lin, and C. M. Hsu, “Spatial variations of waves propagating over a submerged rectangular obstacle,” Ocean Engineering, vol. 32, no. 11-12, pp. 1448–1464, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Yao, Z. Huang, S. G. Monismith, and E. Y. M. Lo, “1DH Boussinesq modeling of wave transformation over fringing reefs,” Ocean Engineering, vol. 47, pp. 30–42, 2012. View at Publisher · View at Google Scholar
  25. P. Ghadimi, M. H. Jabbari, and A. Reisinezhad, “Finite element modeling fo one-dimensional boussinesq-equations,” International Journal of Modeling, Simulation, and Scientific Computing, vol. 2, no. 2, pp. 207–235, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. M. J. Cooker, D. H. Peregrine, C. Vidal, and J. W. Dold, “Interaction between a solitary wave and a submerged semicircular cylinder,” Journal of Fluid Mechanics, vol. 215, pp. 1–22, 1990. View at Google Scholar · View at Scopus
  27. S. T. Grilli, M. A. Losada, and F. Martin, “Wave impact forces on mixed breakwaters,” Coastal Engineering, vol. 88, pp. 1–14, 1992. View at Google Scholar