Table of Contents
International Journal of Peptides
Volume 2011 (2011), Article ID 189242, 8 pages
http://dx.doi.org/10.1155/2011/189242
Review Article

Use of Ghrelin as a Treatment for Inflammatory Bowel Disease: Mechanistic Considerations

Department of Pediatrics, Division of Pediatric Endocrinology, University of Virginia School of Medicine, P.O. Box 800386, Charlottesville, VA 22908, USA

Received 27 April 2011; Accepted 21 June 2011

Academic Editor: A. Inui

Copyright © 2011 Mark D. DeBoer. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Abraham and J. H. Cho, “Inflammatory bowel disease,” The New England Journal of Medicine, vol. 361, no. 21, pp. 2066–2078, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. S. B. Hanauer, A. A. Kornbluth, J. Messick, D. T. Rubin, W. J. Sandborn, and B. E. Sands, “Clinical scenarios in IBD: optimizing the use of conventional and biologic agents,” Inflammatory Bowel Diseases, vol. 16, supplement 1, pp. S1–S11, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Yamamoto, M. Nakahigashi, S. Umegae, and K. Matsumoto, “Enteral nutrition for the maintenance of remission in Crohn's disease: a systematic review,” European Journal of Gastroenterology and Hepatology, vol. 22, no. 1, pp. 1–8, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Kojima, H. Hosoda, Y. Date, M. Nakazato, H. Matsuo, and K. Kangawa, “Ghrelin is a growth-hormone-releasing acylated peptide from stomach,” Nature, vol. 402, no. 6762, pp. 656–660, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Gonzalez-Rey, A. Chorny, and M. Delgado, “Therapeutic action of ghrelin in a mouse model of colitis,” Gastroenterology, vol. 130, no. 6, pp. 1707–1720, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. P. C. Konturek, T. Brzozowski, M. Engel et al., “Ghrelin ameliorates colonic inflammation. Role of nitric oxide and sensory nerves,” Journal of Physiology and Pharmacology, vol. 60, no. 2, pp. 41–47, 2009. View at Google Scholar · View at Scopus
  7. M. D. DeBoer, “Emergence of ghrelin as a treatment for cachexia syndromes,” Nutrition, vol. 24, no. 9, pp. 806–814, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Nakazato, N. Murakami, Y. Date et al., “A role for ghrelin in the central regulation of feeding,” Nature, vol. 409, no. 6817, pp. 194–198, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. V. D. Dixit, E. M. Schaffer, R. S. Pyle et al., “Ghrelin inhibits leptin- and activation-induced proinflammatory cytokine expression by human monocytes and T cells,” Journal of Clinical Investigation, vol. 114, no. 1, pp. 57–66, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Granado, T. Priego, A. I. Martin, M. A. Villanua, and A. Lopez-Calderon, “Anti-inflammatory effect of the ghrelin agonist growth hormone-releasing peptide-2 (GHRP-2) in arthritic rats,” American Journal of Physiology, vol. 288, pp. E486–E492, 2005. View at Google Scholar
  11. M. D. DeBoer, X. Zhu, P. R. Levasseur et al., “Ghrelin treatment of chronic kidney disease: improvements in lean body mass and cytokine profile,” Endocrinology, vol. 149, no. 2, pp. 827–835, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Tack, I. Depoortere, R. Bisschops et al., “Influence of ghrelin on interdigestive gastrointestinal motility in humans,” Gut, vol. 55, no. 3, pp. 327–333, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Trudel, C. Tomasetto, M. C. Rio et al., “Ghrelin/motilin-related peptide is a potent prokinetic to reverse gastric postoperative ileus in rat,” American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 282, no. 6, pp. G948–G952, 2002. View at Google Scholar · View at Scopus
  14. D. E. Cummings, D. S. Weigle, R. Scott Frayo et al., “Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery,” The New England Journal of Medicine, vol. 346, no. 21, pp. 1623–1630, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Kirchner, J. A. Gutierrez, P. J. Solenberg et al., “GOAT links dietary lipids with the endocrine control of energy balance,” Nature Medicine, vol. 15, no. 7, pp. 741–745, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Tschöp, C. Weyer, P. A. Tataranni, V. Devanarayan, E. Ravussin, and M. L. Heiman, “Circulating ghrelin levels are decreased in human obesity,” Diabetes, vol. 50, no. 4, pp. 707–709, 2001. View at Google Scholar · View at Scopus
  17. A. Koch, E. Sanson, A. Helm, S. Voigt, C. Trautwein, and F. Tacke, “Regulation and prognostic relevance of serum ghrelin concentrations in critical illness and sepsis,” Critical Care, p. R94, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. L. D. Madison, J. M. Scarlett, P. Levasseur et al., “Prostacyclin signaling regulates circulating ghrelin during acute inflammation,” Journal of Endocrinology, vol. 196, no. 2, pp. 263–273, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Stengel, M. Goebel, L. Wang, J. R. Reeve, Y. Taché, and N. W. G. Lambrecht, “Lipopolysaccharide differentially decreases plasma acyl and desacyl ghrelin levels in rats: potential role of the circulating ghrelin-acylating enzyme GOAT,” Peptides, vol. 31, no. 9, pp. 1689–1696, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. J. A. Gutierrez, P. J. Solenberg, D. R. Perkins et al., “Ghrelin octanoylation mediated by an orphan lipid transferase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 17, pp. 6320–6325, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Yang, M. S. Brown, G. Liang, N. V. Grishin, and J. L. Goldstein, “Identification of the acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone,” Cell, vol. 132, no. 3, pp. 387–396, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Akamizu, K. Takaya, T. Irako et al., “Pharmacokinetics, safety, and endocrine and appetite effects of ghrelin administration in young healthy subjects,” European Journal of Endocrinology, vol. 150, no. 4, pp. 447–455, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Sun, P. Wang, H. Zheng, and R. G. Smith, “Ghrelin stimulation of growth hormone release and appetite is mediated through the growth hormone secretagogue receptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 13, pp. 4679–4684, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Kojima and K. Kangawa, “Drug insight: the functions of ghrelin and its potential as a multitherapeutic hormone,” Nature Clinical Practice Endocrinology & Metabolism, vol. 2, pp. 80–88, 2006. View at Google Scholar
  25. M. D. DeBoer, “Ghrelin and cachexia: will treatment with GHSR-1a agonists make a difference for patients suffering from chronic wasting syndromes?” Molecular and Cellular Endocrinology, vol. 340, no. 1, pp. 97–105, 2011. View at Publisher · View at Google Scholar
  26. M. Tschop, D. L. Smiley, and M. L. Heiman, “Ghrelin induces adiposity in rodents,” Nature, vol. 407, no. 6806, pp. 908–913, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Isgaard and R. Granata, “Ghrelin in cardiovascular disease and atherogenesis,” Molecular and Cellular Endocrinology, vol. 340, no. 1, pp. 59–64, 2011. View at Publisher · View at Google Scholar
  28. N. Nagaya, J. Moriya, Y. Yasumura et al., “Effects of ghrelin administration on left ventricular function, exercise capacity, and muscle wasting in patients with chronic heart failure,” Circulation, vol. 110, no. 24, pp. 3674–3679, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. N. Nagaya, M. Uematsu, M. Kojima et al., “Chronic administration of ghrelin improves left ventricular dysfunction and attenuates development of cardiac cachexia in rats with heart failure,” Circulation, vol. 104, no. 12, pp. 1430–1435, 2001. View at Google Scholar · View at Scopus
  30. T. Kodama, J. I. Ashitani, N. Matsumoto, K. Kangawa, and M. Nakazato, “Ghrelin treatment suppresses neutrophil-dominant inflammation in airways of patients with chronic respiratory infection,” Pulmonary Pharmacology and Therapeutics, vol. 21, no. 5, pp. 774–779, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. L. Chang, J. Zhao, J. Yang, Z. Zhang, J. Du, and C. Tang, “Therapeutic effects of ghrelin on endotoxic shock in rats,” European Journal of Pharmacology, vol. 473, no. 2-3, pp. 171–176, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Camilleri, A. Papathanasopoulos, and S. T. Odunsi, “Actions and therapeutic pathways of ghrelin for gastrointestinal disorders,” Nature Reviews Gastroenterology and Hepatology, vol. 6, no. 6, pp. 343–352, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. A. K. Bassil, N. B. Dass, C. D. Murray, A. Muir, and G. J. Sanger, “Prokineticin-2, motilin, ghrelin and metoclopramide: prokinetic utility in mouse stomach and colon,” European Journal of Pharmacology, vol. 524, no. 1–3, pp. 138–144, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. D. D. Chen, X. Xu, Q. Zhao, J. Yin, H. Sallam, and J. D. Chen, “Effects of audio stimulation on gastric myoelectrical activity and sympathovagal balance in healthy adolescents and adults,” Journal of Gastroenterology and Hepatology, vol. 23, no. 1, pp. 141–149, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. H. S. Sallam and J.D. Chen, “The prokinetic face of ghrelin,” International Journal of Peptides, vol. 2010, p. 493614, 2010. View at Google Scholar
  36. M. Binn, C. Albert, A. Gougeon et al., “Ghrelin gastrokinetic action in patients with neurogenic gastroparesis,” Peptides, vol. 27, no. 7, pp. 1603–1606, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. I. Bedendi, G. Alloatti, A. Marcantoni et al., “Cardiac effects of ghrelin and its endogenous derivatives des-octanoyl ghrelin and des-Gln14-ghrelin,” European Journal of Pharmacology, vol. 476, no. 1-2, pp. 87–95, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Shikhare and S. Kugathasan, “Inflammatory bowel disease in children: current trends,” Journal of Gastroenterology, vol. 45, no. 7, pp. 673–682, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. E. Bannerman, I. Davidson, C. Conway, D. Culley, M. C. Aldhous, and S. Ghosh, “Altered subjective appetite parameters in Crohn's disease patients,” Clinical Nutrition, vol. 20, no. 5, pp. 399–405, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Thayu, J. Shults, J. M. Burnham, B. S. Zemel, R. N. Baldassano, and M. B. Leonard, “Gender differences in body composition deficits at diagnosis in children and adolescents with Crohn's disease,” Inflammatory Bowel Diseases, vol. 13, no. 9, pp. 1121–1128, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. M. D. Deboer and Y. Li, “Puberty is delayed in male mice with dextran sodium sulfate colitis out of proportion to changes in food intake, body weight, and serum levels of leptin,” Pediatric Research, vol. 69, no. 1, pp. 34–39, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. M. D. DeBoer, Y. Li, and S. Cohn, “Colitis causes delay in puberty in female mice out of proportion to changes in leptin and corticosterone,” Journal of Gastroenterology, vol. 45, no. 3, pp. 277–284, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Paganelli, C. Albanese, O. Borrelli et al., “Inflammation is the main determinant of low bone mineral density in pediatric inflammatory bowel disease,” Inflammatory Bowel Diseases, vol. 13, no. 4, pp. 416–423, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Sawczenko, A. B. Ballinger, M. O. Savage, and I. R. Sanderson, “Clinical features affecting final adult height in patients with pediatric-onset Crohn's disease,” Pediatrics, vol. 118, no. 1, pp. 124–129, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. S. C. Wong, V. E. MacRae, P. McGrogan, and S. F. Ahmed, “The role of pro-inflammatory cytokines in inflammatory bowel disease growth retardation,” Journal of Pediatric Gastroenterology and Nutrition, vol. 43, no. 2, pp. 144–155, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. M. B. Heyman, E. A. Garnett, J. Wojcicki et al., “Growth hormone treatment for growth failure in pediatric patients with Crohn's disease,” Journal of Pediatrics, vol. 153, no. 5, pp. 651–658, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. M. D. DeBoer and B. H. Barnes, “The importance of treatment regimens and pubertal status for growth in IBD,” Journal of Pediatrics, vol. 154, no. 6, pp. 936–937, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Zachos, M. Tondeur, and A. M. Griffiths, “Enteral nutritional therapy for induction of remission in Crohn's disease,” Cochrane Database of Systematic Reviews, no. 1, p. CD000542, 2007. View at Google Scholar · View at Scopus
  49. T. Matsui, T. Sakurai, and T. Yao, “Nutritional therapy for Crohn's disease in Japan,” Journal of Gastroenterology, vol. 40, pp. 25–31, 2005. View at Google Scholar · View at Scopus
  50. K. Bannerjee, C. Camacho-Hubner, K. Babinska et al., “Anti-inflammatory and growth-stimulating effects precede nutritional restitution during enteral feeding in Crohn disease,” Journal of Pediatric Gastroenterology and Nutrition, vol. 38, no. 3, pp. 270–275, 2004. View at Google Scholar · View at Scopus
  51. Y. Ates, B. Degertekin, A. Erdil, H. Yaman, and K. Dagalp, “Serum ghrelin levels in inflammatory bowel disease with relation to disease activity and nutritional status,” Digestive Diseases and Sciences, vol. 53, no. 8, pp. 2215–2221, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. K. Karmiris, I. E. Koutroubakis, C. Xidakis, M. Polychronaki, T. Voudouri, and E. A. Kouroumalis, “Circulating levels of leptin, adiponectin, resistin, and ghrelin in inflammatory bowel disease,” Inflammatory Bowel Diseases, vol. 12, no. 2, pp. 100–105, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Peracchi, M. T. Bardella, F. Caprioli et al., “Circulating ghrelin levels in patients with inflammatory bowel disease,” Gut, vol. 55, no. 3, pp. 432–433, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. Y. Nishi, H. Isomoto, H. Ueno et al., “Plasma leptin and ghrelin concentrations in patients with Crohn's disease,” World Journal of Gastroenterology, vol. 11, no. 46, pp. 7314–7317, 2005. View at Google Scholar · View at Scopus
  55. E. Alexandridis, A. Zisimopoulos, N. Liratzopoulos, I. Katsos, K. Manolas, and G. Kouklakis, “Obestatin/ghrelin ratio: a new activity index in inflammatory bowel diseases,” Inflammatory Bowel Diseases, vol. 15, no. 10, pp. 1557–1561, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Hosomi, N. Oshitani, N. Kamata et al., “Phenotypical and functional study of ghrelin and its receptor in the pathogenesis of Crohn's disease,” Inflammatory Bowel Diseases, vol. 14, no. 9, pp. 1205–1213, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. N. P. Hyland, A. P. Chambers, C. M. Keenan, Q. J. Pittman, and K. A. Sharkey, “Differential adipokine response in genetically predisposed lean and obese rats during inflammation: a role in modulating experimental colitis?” American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 297, no. 5, pp. G869–G877, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. J. M. Garcia, M. Garcia-Touza, R. A. Hijazi et al., “Active ghrelin levels and active to total ghrelin ratio in cancer-induced cachexia,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 5, pp. 2920–2926, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Yoshimoto, K. Mori, A. Sugawara et al., “Plasma ghrelin and desacyl ghrelin concentrations in renal failure,” Journal of the American Society of Nephrology, vol. 13, no. 11, pp. 2748–2752, 2002. View at Publisher · View at Google Scholar · View at Scopus
  60. N. Nagaya, M. Uematsu, M. Kojima et al., “Elevated circulating level of ghrelin in cachexia associated with chronic heart failure: relationships between ghrelin and anabolic/catabolic factors,” Circulation, vol. 104, no. 17, pp. 2034–2038, 2001. View at Google Scholar · View at Scopus
  61. M. D. DeBoer, X. Z. Xin, P. Levasseur et al., “Ghrelin treatment causes increased food intake and retention of lean body mass in a rat model of cancer cachexia,” Endocrinology, vol. 148, no. 6, pp. 3004–3012, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. N. M. Neary, C. J. Small, A. M. Wren et al., “Ghrelin increases energy intake in cancer patients with impaired appetite: acute, randomized, placebo-controlled trial,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 6, pp. 2832–2836, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. F. Strasser, T. A. Lutz, M. T. Maeder et al., “Safety, tolerability and pharmacokinetics of intravenous ghrelin for cancer-related anorexia/cachexia: a randomised, placebo-controlled, double-blind, double-crossover study,” British Journal of Cancer, vol. 98, no. 2, pp. 300–308, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. K. Wynne, K. Giannitsopoulou, C. J. Small et al., “Subcutaneous ghrelin enhances acute food intake in malnourished patients who receive maintenance peritoneal dialysis: a randomized, placebo-controlled trial,” Journal of the American Society of Nephrology, vol. 16, no. 7, pp. 2111–2118, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. N. Nagaya, T. Itoh, S. Murakami et al., “Treatment of cachexia with ghrelin in patients with COPD,” Chest, vol. 128, no. 3, pp. 1187–1193, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. B. De Smet, T. Thijs, D. Moechars et al., “Endogenous and exogenous ghrelin enhance the colonic and gastric manifestations of dextran sodium sulphate-induced colitis in mice,” Neurogastroenterology and Motility, vol. 21, no. 1, pp. 59–70, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. L. A. Dieleman, M. J. Palmen, H. Akol et al., “Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines,” Clinical and Experimental Immunology, vol. 114, no. 3, pp. 385–391, 1998. View at Publisher · View at Google Scholar · View at Scopus
  68. T. T. Pizarro, K. O. Arseneau, G. Bamias, and F. Cominelli, “Mouse models for the study of Crohn's disease,” Trends in Molecular Medicine, vol. 9, no. 5, pp. 218–222, 2003. View at Publisher · View at Google Scholar · View at Scopus
  69. M. D. DeBoer and D. L. Marks, “Therapy insight: use of melanocortin antagonists in the treatment of cachexia in chronic disease,” Nature Clinical Practice Endocrinology & Metabolism, vol. 2, pp. 459–466, 2006. View at Google Scholar
  70. J. Garcia, R. Boccia, C. Graham, K. Kumor, and W. Polvino, “A phase II, randomized, placebo-controlled, double blind study of the efficacy and safety of RC-1291 for the treatment of cancer-cachexia. Abstract 2007 American Society of Clinical Oncology (ASCO) Meeting, Chicago, IL,” Journal of Clinical Oncology, vol. 25, 2007. View at Google Scholar
  71. L. A. Denson, M. O. Kim, R. Bezold et al., “A randomized controlled trial of growth hormone in active pediatric crohn disease,” Journal of Pediatric Gastroenterology and Nutrition, vol. 51, no. 2, pp. 130–139, 2010. View at Publisher · View at Google Scholar · View at Scopus