Table of Contents
International Journal of Peptides
Volume 2011, Article ID 761037, 11 pages
http://dx.doi.org/10.1155/2011/761037
Research Article

Antifungal Activities of Peptides Derived from Domain 5 of High-Molecular-Weight Kininogen

1Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden
2Department of Pharmacy, Uppsala University, 751 23 Uppsala, Sweden

Received 1 April 2011; Accepted 16 June 2011

Academic Editor: Manuela Raffatellu

Copyright © 2011 Andreas Sonesson et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. G. Netea, G. D. Brown, B. J. Kullberg, and N. A. Gow, “An integrated model of the recognition of Candida albicans by the innate immune system,” Nature Reviews Microbiology, vol. 6, no. 1, pp. 67–78, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Medzhitov, “Recognition of microorganisms and activation of the immune response,” Nature, vol. 449, no. 7164, pp. 819–826, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Goodarzi, J. Trowbridge, and R. L. Gallo, “Innate immunity: a cutaneous perspective,” Clinical Reviews in Allergy and Immunology, vol. 33, no. 1-2, pp. 15–26, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. D. R. Drake, K. A. Brogden, D. V. Dawson, and P. W. Wertz, “Thematic review series: skin lipids. Antimicrobial lipids at the skin surface,” Journal of Lipid Research, vol. 49, no. 1, pp. 4–11, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. M. E. Selsted and A. J. Ouellette, “Mammalian defensins in the antimicrobial immune response,” Nature Immunology, vol. 6, no. 6, pp. 551–557, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Frohm, B. Agerberth, G. Ahangari et al., “The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders,” Journal of Biological Chemistry, vol. 272, no. 24, pp. 15258–15263, 1997. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Zanetti, “Cathelicidins, multifunctional peptides of the innate immunity,” Journal of Leukocyte Biology, vol. 75, no. 1, pp. 39–48, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Harder and J. M. Schröder, “Psoriatic scales: a promising source for the isolation of human skin-derived antimicrobial proteins,” Journal of Leukocyte Biology, vol. 77, no. 4, pp. 476–486, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. U. H. N. Dürr, U. S. Sudheendra, and A. Ramamoorthy, “LL-37, the only human member of the cathelicidin family of antimicrobial peptides,” Biochimica et Biophysica Acta, vol. 1758, no. 9, pp. 1408–1425, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. V. Rydengård, O. Shannon, K. Lundqvist et al., “Histidine-rich glycoprotein protects from systemic Candida infection,” PLoS Pathogens, vol. 4, no. 8, Article ID e1000116, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. B. A. Dale and L. P. Fredericks, “Antimicrobial peptides in the oral environment: expression and function in health and disease,” Current Issues in Molecular Biology, vol. 7, no. 2, pp. 119–133, 2005. View at Google Scholar · View at Scopus
  12. H. Jenssen, P. Hamill, and R. E. Hancock, “Peptide antimicrobial agents,” Clinical Microbiology Reviews, vol. 19, no. 3, pp. 491–511, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Theis and U. Stahl, “Antifungal proteins: targets, mechanisms and prospective applications,” Cellular and Molecular Life Sciences, vol. 61, no. 4, pp. 437–455, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. N. Papo and Y. Shai, “Can we predict biological activity of antimicrobial peptides from their interactions with model phospholipid membranes?” Peptides, vol. 24, no. 11, pp. 1693–1703, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. N. Y. Yount, A. S. Bayer, Y. Q. Xiong, and M. R. Yeaman, “Advances in antimicrobial peptide immunobiology,” Biopolymers, vol. 84, no. 5, pp. 435–458, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Pasupuleti, B. Walse, B. Svensson, M. Malmsten, and A. Schmidtchen, “Rational design of antimicrobial C3a analogues with enhanced effects against staphylococci using an integrated structure and function-based approach,” Biochemistry, vol. 47, no. 35, pp. 9057–9070, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. B. Bechinger, “A dynamic view of peptides and proteins in membranes,” Cellular and Molecular Life Sciences, vol. 65, no. 19, pp. 3028–3039, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Gennaro and M. Zanetti, “Structural features and biological activities of the cathelicidin-derived antimicrobial peptides,” Biopolymers, vol. 55, no. 1, pp. 31–49, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Zasloff, “Antimicrobial peptides of multicellular organisms,” Nature, vol. 415, no. 6870, pp. 389–395, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Andersson, V. Rydengård, A. Sonesson, M. Mörgelin, L. Björck, and A. Schmidtchen, “Antimicrobial activities of heparin-binding peptides,” European Journal of Biochemistry, vol. 271, no. 6, pp. 1219–1226, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. W. Baranska, A. Sonesson, R. Nowicki, and A. Schmidtchen, “Glycosaminoglycans inhibit the antibacterial activity of LL-37 in biological fluids,” Journal of Antimicrobial Chemotherapy, vol. 57, no. 2, pp. 260–265, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. K. A. Brogden, “Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?” Nature Reviews Microbiology, vol. 3, no. 3, pp. 238–250, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. A. A. Strömstedt, L. Ringstad, A. Schmidtchen, and M. Malmsten, “Interaction between amphiphilic peptides and phospholipid membranes,” Current Opinion in Colloid and Interface Science, vol. 15, no. 6, pp. 467–478, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Gomez-Lopez, O. Zaragoza, J. L. Rodriguez-Tudela, and M. Cuenca-Estrella, “Pharmacotherapy of yeast infections,” Expert Opinion on Pharmacotherapy, vol. 9, no. 16, pp. 2801–2816, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. F. C. Odds, Candida and Candidosis, Bailliére Tindall, London, UK, 1988.
  26. J. Savolainen, K. Lammintausta, K. Kalimo, and M. Viander, “Candida albicans and atopic dermatitis,” Clinical and Experimental Allergy, vol. 23, no. 4, pp. 332–339, 1993. View at Google Scholar · View at Scopus
  27. W. E. Trick, S. K. Fridkin, J. R. Edwards, R. A. Hajjeh, and R. P. Gaynes, “Secular trend of hospital-acquired candidemia among intensive care unit patients in the United States during 1989-1999,” Clinical Infectious Diseases, vol. 35, no. 5, pp. 627–630, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. A. K. Gupta, R. Batra, R. Bluhm, T. Boekhout, and T. L. Dawson Jr., “Skin diseases associated with Malassezia species,” Journal of the American Academy of Dermatology, vol. 51, no. 5, pp. 785–798, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. R. K. Devlin, “Invasive fungal infections caused by Candida and Malassezia species in the neonatal intensive care unit,” Advances in Neonatal Care, vol. 6, no. 2, pp. 68–77, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Ben Nasr, H. Herwald, W. Muller-Esterl, and L. Bjorck, “Human kininogens interact with M protein, a bacterial surface protein and virulence determinant,” Biochemical Journal, vol. 305, pp. 173–180, 1995. View at Google Scholar · View at Scopus
  31. H. Herwald, M. Mörgelin, A. Olsen et al., “Activation of the contact-phase system on bacterial surfaces—a clue to serious complications in infectious diseases,” Nature Medicine, vol. 4, pp. 298–302, 1998. View at Publisher · View at Google Scholar
  32. M. Rapala-Kozik, J. Karkowska, A. Jacher et al., “Kininogen adsorption to the cell surface of Candida spp,” International Immunopharmacology, vol. 8, no. 2, pp. 237–241, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. E. A. Nordahl, V. Rydengård, M. Mörgelin, and A. Schmidtchen, “Domain 5 of high molecular weight kininogen is antibacterial,” Journal of Biological Chemistry, vol. 280, no. 41, pp. 34832–34839, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. I. M. Frick, P. Åkesson, H. Herwald et al., “The contact system—a novel branch of innate immunity generating antibacterial peptides,” EMBO Journal, vol. 25, no. 23, pp. 5569–5578, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. A. P. Kaplan and B. Ghebrehiwet, “The plasma bradykinin-forming pathways and its interrelationships with complement,” Molecular Immunology, vol. 47, no. 13, pp. 2161–2169, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Kozik, R. B. Moore, J. Potempa, T. Imamura, M. Rapala-Kozik, and J. Travis, “A novel mechanism for bradykinin production at inflammatory sites. Diverse effects of a mixture of neutrophil elastase and mast cell tryptase versus tissue and plasma kallikreins on native and oxidized kininogens,” Journal of Biological Chemistry, vol. 273, no. 50, pp. 33224–33229, 1998. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Maruo, T. Akaike, Y. Inada, I. Ohkubo, T. Ono, and H. Maeda, “Effect of microbial and mite proteases on low and high molecular weight kininogens. Generation of kinin and inactivation of thiol protease inhibitory activity,” Journal of Biological Chemistry, vol. 268, no. 24, pp. 17711–17715, 1993. View at Google Scholar · View at Scopus
  38. H. Herwald, M. Mörgelin, H. G. Svensson, and U. Sjöbring, “Zinc-dependent conformational changes in domain D5 of high molecular mass kininogen modulate contact activation,” European Journal of Biochemistry, vol. 268, no. 2, pp. 396–404, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. R. I. Lehrer, M. Rosenman, S. S. Harwig, R. Jackson, and P. Eisenhauer, “Ultrasensitive assays for endogenous antimicrobial polypeptides,” Journal of Immunological Methods, vol. 137, no. 2, pp. 167–173, 1991. View at Publisher · View at Google Scholar · View at Scopus
  40. B. Lopez-Garcia, P. H. Lee, and R. L. Gallo, “Expression and potential function of cathelicidin antimicrobial peptides in dermatophytosis and tinea versicolor,” Journal of Antimicrobial Chemotherapy, vol. 57, no. 5, pp. 877–882, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. D. Avrahami and Y. Shai, “Conjugation of a magainin analogue with lipophilic acids controls hydrophobicity, solution assembly, and cell selectivity,” Biochemistry, vol. 41, no. 7, pp. 2254–2263, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. L. A. Murillo, C. Y. Lan, N. M. Agabian, S. Larios, and B. Lomonte, “Fungicidal activity of a phospholipase A2-derived synthetic peptide variant against Candida albicans,” Revista Espanola de Quimioterapia, vol. 20, no. 3, pp. 330–333, 2007. View at Google Scholar · View at Scopus
  43. A. Schmidtchen, L. Ringstad, G. Kasetty, H. Mizuno, M. W. Rutland, and M. Malmsten, “Membrane selectivity by W-tagging of antimicrobial peptides,” Biochimica et Biophysica Acta, vol. 1808, no. 4, pp. 1081–1091, 2011. View at Publisher · View at Google Scholar
  44. O. G. Mouritsen and M. J. Zuckermann, “What's so special about cholesterol?” Lipids, vol. 39, no. 11, pp. 1101–1113, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Henriksen, A. C. Rowat, E. Brief et al., “Universal behavior of membranes with sterols,” Biophysical Journal, vol. 90, no. 5, pp. 1639–1649, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Azouzi, K. El Kirat, and S. Morandat, “The potent antimalarial drug cyclosporin a preferentially destabilizes sphingomyelin-rich membranes,” Langmuir, vol. 26, no. 3, pp. 1960–1965, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. R. Sood, Y. Domanov, M. Pietiainen, V. P. Kontinen, and P. K. Kinnunen, “Binding of LL-37 to model biomembranes: insight into target vs host cell recognition,” Biochimica et Biophysica Acta, vol. 1778, no. 4, pp. 983–996, 2008. View at Publisher · View at Google Scholar
  48. H. Ohvo-Rekila, B. Ramstedt, P. Leppimaki, and J. P. Slotte, “Cholesterol interactions with phospholipids in membranes,” Progress in Lipid Research, vol. 41, no. 1, pp. 66–97, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. A. A. Hasan, D. B. Cines, H. Herwald, A. H. Schmaier, and W. Muller-Esterl, “Mapping the cell binding site on high molecular weight kininogen domain 5,” Journal of Biological Chemistry, vol. 270, no. 33, pp. 19256–19261, 1995. View at Publisher · View at Google Scholar · View at Scopus
  50. J. C. Zhang, K. Claffey, R. Sakthivel et al., “Two-chain high molecular weight kininogen induces endothelial cell apoptosis and inhibits angiogenesis: partial activity within domain 5,” FASEB Journal, vol. 14, no. 15, pp. 2589–2600, 2000. View at Google Scholar · View at Scopus
  51. R. W. Colman, “Role of the light chain of high molecular weight kininogen in adhesion, cell-associated proteolysis and angiogenesis,” Biological Chemistry, vol. 382, no. 1, pp. 65–70, 2001. View at Publisher · View at Google Scholar · View at Scopus
  52. C. Beisswenger and R. Bals, “Functions of antimicrobial peptides in host defense and immunity,” Current Protein and Peptide Science, vol. 6, no. 3, pp. 255–264, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. D. Yang, A. Biragyn, D. M. Hoover, J. Lubkowski, and J. J. Oppenheim, “Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense,” Annual Review of Immunology, vol. 22, pp. 181–215, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. P. Elsbach, “What is the real role of antimicrobial polypeptides that can mediate several other inflammatory responses?” Journal of Clinical Investigation, vol. 111, no. 11, pp. 1643–1645, 2003. View at Google Scholar · View at Scopus
  55. E. A. Nordahl, V. Rydengård, P. Nyberg et al., “Activation of the complement system generates antibacterial peptides,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 48, pp. 16879–16884, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Sonesson, L. Ringstad, E. A. Nordahl, M. Malmsten, M. Mörgelin, and A. Schmidtchen, “Antifungal activity of C3a and C3a-derived peptides against Candida,” Biochimica et Biophysica Acta, vol. 1768, no. 2, pp. 346–353, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. E. A. Nordahl, V. Rydengård, M. Mörgelin, and A. Schmidtchen, “Domain 5 of high molecular weight kininogen is antibacterial,” Journal of Biological Chemistry, vol. 280, no. 41, pp. 34832–34839, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. H. A. Pereira, “CAP37, a neutrophil-derived multifunctional inflammatory mediator,” Journal of Leukocyte Biology, vol. 57, no. 6, pp. 805–812, 1995. View at Google Scholar · View at Scopus
  59. M. Malmsten, M. Davoudi, B. Walse et al., “Antimicrobial peptides derived from growth factors,” Growth Factors, vol. 25, no. 1, pp. 60–70, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Malmsten, M. Davoudi, and A. Schmidtchen, “Bacterial killing by heparin-binding peptides from PRELP and thrombospondin,” Matrix Biology, vol. 25, no. 5, pp. 294–300, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Pasupuleti, M. Roupe, V. Rydengaård et al., “Antimicrobial activity of human prion protein is mediated by its N-terminal region,” PLoS ONE, vol. 4, no. 10, Article ID e7358, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Nilsson, S. Wasylik, M. Mörgelin et al., “The antibacterial activity of peptides derived from human β-2 glycoprotein I is inhibited by protein H and M1 protein from Streptococcus pyogenes,” Molecular Microbiology, vol. 67, no. 3, pp. 482–492, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. P. Papareddy, V. Rydengård, M. Pasupuleti et al., “Proteolysis of human thrombin generates novel host defense peptides,” PLoS Pathogens, vol. 6, no. 4, Article ID e1000857, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. P. Papareddy, M. Kalle, G. Kasetty et al., “C-terminal peptides of tissue factor pathway inhibitor are novel host defense molecules,” Journal of Biological Chemistry, vol. 285, no. 36, pp. 28387–28398, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. A. D. Cardin and H. J. Weintraub, “Molecular modeling of protein-glycosaminoglycan interactions,” Arteriosclerosis, vol. 9, no. 1, pp. 21–32, 1989. View at Google Scholar · View at Scopus
  66. L. Ringstad, A. Schmidtchen, and M. Malmsten, “Effect of peptide length on the interaction between consensus peptides and DOPC/DOPA bilayers,” Langmuir, vol. 22, no. 11, pp. 5042–5050, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. R. A. D. Cadena and R. W. Colman, “The sequence HGLGHGHEQQHGLGHGH in the light chain of high molecular weight kininogen serves as a primary structural feature for zinc-dependent binding to an anionic surface,” Protein Science, vol. 1, no. 1, pp. 151–160, 1992. View at Google Scholar · View at Scopus
  68. I. Björk, S. T. Olson, R. G. Sheffer, and J. D. Shore, “Binding of heparin to human high molecular weight kininogen,” Biochemistry, vol. 28, no. 3, pp. 1213–1221, 1989. View at Google Scholar · View at Scopus
  69. R. A. Pixley, Y. Lin, I. Isordia-Salas, and R. W. Colman, “Fine mapping of the sequences in domain 5 of high molecular weight kininogen (HK) interacting with heparin and zinc,” Journal of Thrombosis and Haemostasis, vol. 1, no. 8, pp. 1791–1798, 2003. View at Google Scholar · View at Scopus
  70. S. P. Kunapuli, R. A. D. Cadena, and R. W. Colman, “Deletion mutagenesis of high molecular weight kininogen light chain. Identification of two anionic surface binding subdomains,” Journal of Biological Chemistry, vol. 268, no. 4, pp. 2486–2492, 1993. View at Google Scholar · View at Scopus
  71. L. Ringstad, L. Kacprzyk, A. Schmidtchen, and M. Malmsten, “Effects of topology, length, and charge on the activity of a kininogen-derived peptide on lipid membranes and bacteria,” Biochimica et Biophysica Acta, vol. 1768, no. 3, pp. 715–727, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. A. Schmidtchen, M. Pasupuleti, M. Mörgelin et al., “Boosting antimicrobial peptides by hydrophobic oligopeptide end tags,” Journal of Biological Chemistry, vol. 284, no. 26, pp. 17584–17594, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. M. Pasupuleti, A. Schmidtchen, A. Chalupka, L. Ringstad, and M. Malmsten, “End-tagging of ultra-short antimicrobial peptides by W/F stretches to facilitate bacterial killing,” PLoS ONE, vol. 4, no. 4, Article ID e5285, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Stuardo, C. B. Gonzalez, F. Nualart et al., “Stimulated human neutrophils form biologically active kinin peptides from high and low molecular weight kininogens,” Journal of Leukocyte Biology, vol. 75, no. 4, pp. 631–640, 2004. View at Publisher · View at Google Scholar · View at Scopus
  75. F. C. Odds, “Pathogenesis of Candida infections,” Journal of the American Academy of Dermatology, vol. 31, no. 3, pp. S2–S5, 1994. View at Google Scholar · View at Scopus
  76. T. L. Ray and K. D. Wuepper, “Activation of the alternative (properdin) pathway of complement by Candida albicans and related species,” Journal of Investigative Dermatology, vol. 67, no. 6, pp. 700–703, 1976. View at Google Scholar · View at Scopus