Table of Contents
International Journal of Peptides
Volume 2012, Article ID 124163, 5 pages
http://dx.doi.org/10.1155/2012/124163
Research Article

Diverse Effects of Glutathione and UPF Peptides on Antioxidant Defense System in Human Erythroleukemia Cells K562

The Centre of Excellence of Translational Medicine, Department of Biochemistry, Faculty of Medicine, University of Tartu, Ravila Street 19, 50411 Tartu, Estonia

Received 15 September 2011; Accepted 2 December 2011

Academic Editor: Katsuhiro Konno

Copyright © 2012 Ceslava Kairane et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Zilmer, U. Soomets, A. Rehema, and U. Langel, “The glutathione system as an attractive therapeutic target,” Drug Design Reviews Online, vol. 2, no. 2, pp. 121–127, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. N. H. P. Cnubben, I. M. C. M. Rietjens, H. Wortelboer, J. Van Zanden, and P. J. Van Bladeren, “The interplay of glutathione-related processes in antioxidant defense,” Environmental Toxicology and Pharmacology, vol. 10, no. 4, pp. 141–152, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. D. A. Dickinson, A. L. Levonen, D. R. Moellering et al., “Human glutamate cysteine ligase gene regulation through the electrophile response element,” Free Radical Biology and Medicine, vol. 37, no. 8, pp. 1152–1159, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. N. Ballatori, S. M. Krance, S. Notenboom, S. Shi, K. Tieu, and C. L. Hammond, “Glutathione dysregulation and the etiology and progression of human diseases,” Biological Chemistry, vol. 390, no. 3, pp. 191–214, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Franco, O. J. Schoneveld, A. Pappa, and M. I. Panayiotidis, “The central role of glutathione in the pathophysiology of human diseases,” Archives of Physiology and Biochemistry, vol. 113, no. 4-5, pp. 234–258, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. O. Ortolani, A. Conti, A. R. De Gaudio, E. Moraldi, Q. Cantini, and G. Novelli, “The effect of glutathione and N-acetylcysteine on lipoperoxidative damage in patients with early septic shock,” American Journal of Respiratory and Critical Care Medicine, vol. 161, no. 6, pp. 1907–1911, 2000. View at Google Scholar · View at Scopus
  7. A. Wendel and P. Cikryt, “The level and half-life of glutathione in human plasma,” FEBS Letters, vol. 120, no. 2, pp. 209–211, 1980. View at Publisher · View at Google Scholar · View at Scopus
  8. I. Cacciatore, C. Cornacchia, F. Pinnen, A. Mollica, and A. Di Stefano, “Prodrug approach for increasing cellular glutathione levels,” Molecules, vol. 15, no. 3, pp. 1242–1264, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Ehrlich, S. Viirlaid, R. Mahlapuu et al., “Design, synthesis and properties of novel powerful antioxidants, glutathione analogues,” Free Radical Research, vol. 41, no. 7, pp. 779–787, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Gozzo, D. Lesieur, P. Duriez, J. C. Fruchart, and E. Teissier, “Structure-activity relationships in a series of melatonin analogues with the low-density lipoprotein oxidation model,” Free Radical Biology and Medicine, vol. 26, no. 11-12, pp. 1538–1543, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. T. L. Yue, P. J. Mckenna, P. G. Lysko et al., “SB 211475, a metabolite of carvedilol, a novel antihypertensive agent, is a potent antioxidant,” European Journal of Pharmacology, vol. 251, no. 2-3, pp. 237–243, 1994. View at Google Scholar · View at Scopus
  12. J. Kals, J. Starkopf, M. Zilmer et al., “Antioxidant UPF1 attenuates myocardial stunning in isolated rat hearts,” International Journal of Cardiology, vol. 125, no. 1, pp. 133–135, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Põder, M. Zilmer, J. Starkopf et al., “An antioxidant tetrapeptide UPF1 in rats has a neuroprotective effect in transient global brain ischemia,” Neuroscience Letters, vol. 370, no. 1, pp. 45–50, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. I. Fridovich, “Superoxide anion radical (O2¯), superoxide dismutases, and related matters,” Journal of Biological Chemistry, vol. 272, no. 30, pp. 18515–18517, 1997. View at Publisher · View at Google Scholar · View at Scopus
  15. M. D. De Beus, J. Chung, and W. Colón, “Modification of cysteine 111 in Cu/Zn superoxide dismutase results in altered spectroscopic and biophysical properties,” Protein Science, vol. 13, no. 5, pp. 1347–1355, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. M. A. Hough and S. S. Hasnain, “Structure of fully reduced bovine copper zinc superoxide dismutase at 1.15 Å,” Structure, vol. 11, no. 8, pp. 937–946, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. U. Soomets, M. Zilmer, and Ü. Langel, “Manual solid-phase synthesis of glutathione analogues: a laboratory-based short course,” in Peptide Synthesis and Applications, J. Howl, Ed., pp. 241–257, Humana Press, Totowa, NJ, USA, 2006. View at Google Scholar
  18. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the Folin phenol reagent,” The Journal of biological chemistry, vol. 193, no. 1, pp. 265–275, 1951. View at Google Scholar · View at Scopus
  19. F. Tietze, “Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues,” Analytical Biochemistry, vol. 27, no. 3, pp. 502–522, 1969. View at Google Scholar · View at Scopus
  20. D. Burg, D. V. Filippov, R. Hermanns, G. A. Van der Marel, J. H. Van Boom, and G. J. Mulder, “Peptidomimetic glutathione analogues as novel γGT stable GST inhibitors,” Bioorganic and Medicinal Chemistry, vol. 10, no. 1, pp. 195–205, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Viirlaid, R. Mahlapuu, K. Kilk, A. Kuznetsov, U. Soomets, and J. Järv, “Mechanism and stoichiometry of 2,2-diphenyl-1-picrylhydrazyl radical scavenging by glutathione and its novel α-glutamyl derivative,” Bioorganic Chemistry, vol. 37, no. 4, pp. 126–132, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Ehrlich, K. Ida, R. Mahlapuu et al., “Characterization of UPF peptides, members of the glutathione analogues library, on the basis of their effects on oxidative stress-related enzymes,” Free Radical Research, vol. 43, no. 6, pp. 572–580, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Karelson, R. Mahlapuu, M. Zilmer, U. Soomets, N. Bogdanovic, and U. Langel, “Possible signaling by glutathione and its novel analogue through potent stimulation of frontocortical G proteins in normal aging and in Alzheimer's disease,” Annals of the New York Academy of Sciences, vol. 973, pp. 537–540, 2002. View at Google Scholar · View at Scopus
  24. R. Janáky, K. Ogita, B. A. Pasqualotto et al., “Glutathione and signal transduction in the mammalian CNS,” Journal of Neurochemistry, vol. 73, no. 3, pp. 889–902, 1999. View at Publisher · View at Google Scholar · View at Scopus
  25. Z. Jenei, R. Janáky, V. Varga, P. Saransaari, and S. S. Oja, “Interference of S-alkyl derivatives of glutathione with brain ionotropic glutamate receptors,” Neurochemical Research, vol. 23, no. 8, pp. 1085–1091, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. P. G. Genever, D. J. P. Wilkinson, A. J. Patton et al., “Expression of a functional N-methyl-D-aspartate-type glutamate receptor by bone marrow megakaryocytes,” Blood, vol. 93, no. 9, pp. 2876–2883, 1999. View at Google Scholar · View at Scopus
  27. A. Makhro, J. Wang, J. Vogel et al., “Functional NMDA receptors in rat erythrocytes,” American Journal of Physiology, vol. 298, no. 6, pp. C1315–C1325, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Sánchez-Moreno, J. A. Larrauri, and F. Saura-Calixto, “A procedure to measure the antiradical efficiency of polyphenols,” Journal of the Science of Food and Agriculture, vol. 76, no. 2, pp. 270–276, 1998. View at Publisher · View at Google Scholar · View at Scopus