Table of Contents
International Journal of Peptides
Volume 2013, Article ID 197317, 9 pages
http://dx.doi.org/10.1155/2013/197317
Research Article

Development of the Schedule for Multiple Parallel “Difficult” Peptide Synthesis on Pins

Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, 10 Pogodinskaya Ulica, Moscow 119121, Russia

Received 30 April 2013; Accepted 9 July 2013

Academic Editor: John D. Wade

Copyright © 2013 Ekaterina F. Kolesanova et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. G. Zgoda, A. T. Kopylov, O. V. Tikhonova et al., “Chromosome 18 transcriptome profiling and targeted proteome mapping in depleted plasma, liver tissue and HepG2 cells,” Proteome Research, vol. 12, no. 1, pp. 123–134, 2013. View at Google Scholar
  2. A. Maiolica, M. A. Jünger, I. Ezkurdia, and R. Aebersold, “Targeted proteome investigation via selected reaction monitoring mass spectrometry,” Journal of Proteomics, vol. 75, no. 12, pp. 3495–3513, 2012. View at Google Scholar
  3. H. Stephanowitz, S. Lange, D. Lang, C. Freund, and E. Krause, “Improved two-dimensional reversed phase-reversed phase LC-MS/MS approach for identification of peptide-protein interactions,” Journal of Proteome Research, vol. 11, no. 2, pp. 1175–1183, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Katz, L. Levy-Beladev, S. Rotem-Bamberger, T. Rito, S. G. D. Rüdiger, and A. Friedler, “Studying protein-protein interactions using peptide arrays,” Chemical Society Reviews, vol. 40, no. 5, pp. 2131–2145, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. L. V. Olenina, T. I. Kuzmina, B. N. Sobolev, T. E. Kuraeva, E. F. Kolesanova, and A. I. Archakov, “Identification of glycosaminoglycan-binding sites within hepatitis C virus envelope glycoprotein E2,” Journal of Viral Hepatitis, vol. 12, no. 6, pp. 584–593, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. A. M. Bray, R. M. Valerio, A. J. DiPasquale, J. Greig, and N. J. Maeji, “Multiple synthesis by the multipin method as a methodological tool,” Journal of Peptide Science, vol. 1, no. 1, pp. 80–87, 1995. View at Google Scholar · View at Scopus
  7. L. V. Olenina, L. I. Nikolaeva, B. N. Sobolev, N. P. Blokhina, A. I. Archakov, and E. F. Kolesanova, “Mapping and characterization of B cell linear epitopes in the conservative regions of hepatitis C virus envelope glycoproteins,” Journal of Viral Hepatitis, vol. 9, no. 3, pp. 174–182, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. E. V. Kugaevskaya, E. F. Kolesanova, S. A. Kozin, A. V. Veselovsky, I. R. Dedinsky, and Y. E. Elisseeva, “Epitope mapping of the domains of human angiotensin converting enzyme,” Biochimica et Biophysica Acta, vol. 1760, no. 6, pp. 959–965, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. T. I. Kuzmina, L. V. Olenina, M. A. Sanzhakov et al., “Antigenicity and B-epitope mapping of hepatitis C virus envelope protein E2,” Biochemistry, vol. 3, no. 2, pp. 177–182, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. T. W. Tobery, S. Wang, X.-M. Wang et al., “A simple and efficient method for the monitoring of antigen-specific T cell responses using peptide pool arrays in a modified ELISpot assay,” Journal of Immunological Methods, vol. 254, no. 1-2, pp. 59–66, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Yang, E. A. James, L. Huston, N. A. Danke, A. W. Liu, and W. W. Kwok, “Multiplex mapping of CD4 T cell epitopes using class II tetramers,” Clinical Immunology, vol. 120, no. 1, pp. 21–32, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. D. A. Lewinsohn, E. Winata, G. M. Swarbrick et al., “Immunodominant tuberculosis CD8 antigens preferentially restricted by HLA-B,” PLoS Pathogens, vol. 3, no. 9, article e127, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. B. T. Houseman, J. H. Huh, S. J. Kron, and M. Mrksich, “Peptide chips for the quantitative evaluation of protein kinase activity,” Nature Biotechnology, vol. 20, no. 3, pp. 270–274, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. F. D. Smith, B. K. Samelson, and J. D. Scott, “Discovery of cellular substrates for protein kinase A using a peptide array screening protocol,” Biochemical Journal, vol. 438, no. 1, pp. 103–110, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Arsenault, P. Griebel, and S. Napper, “Peptide arrays for kinome analysis: new opportunities and remaining challenges,” Proteomics, vol. 11, no. 24, pp. 4595–4609, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Thiele, G. I. Stangl, and M. Schutkowski, “Deciphering enzyme function using peptide arrays,” Molecular Biotechnology, vol. 49, no. 3, pp. 283–305, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. S. M. Fuchs, K. Krajewski, R. W. Baker, V. L. Miller, and B. D. Strahl, “Influence of combinatorial histone modifications on antibody and effector protein recognition,” Current Biology, vol. 21, no. 1, pp. 53–58, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Inoue, T. Mori, G. Yamanouchi et al., “Surface plasmon resonance imaging measurements of caspase reactions on peptide microarrays,” Analytical Biochemistry, vol. 375, no. 1, pp. 147–149, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Hilpert, “High-throughput screening for antimicrobial peptides using the SPOT technique,” Methods in Molecular Biology, vol. 618, pp. 125–133, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Koes, K. Khoury, Y. Huang et al., “Enabling large-scale design, synthesis and validation of small molecule protein-protein antagonists,” PLoS ONE, vol. 7, no. 3, Article ID e32839, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Kanie, R. Kato, Y. Zhao, Y. Narita, M. Okochi, and H. Honda, “Amino acid sequence preferences to control cell-specific organization of endothelial cells, smooth muscle cells, and fibroblasts,” Journal of Peptide Science, vol. 17, no. 6, pp. 479–486, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. S. J. Rodda, “Synthesis of multiple peptides on plastic pins,” Current Protocols in Immunology, Ch 9: Unit 9.7, 2001. View at Google Scholar · View at Scopus
  23. P. Lloyd-Williams, F. Albericio F, and E. Giralt, Chemical Approaches to the Synthesis of Peptides and Proteins, CRC Press LLC, New York, NY, USA, 1997.
  24. J. Bedford, C. Hyde, T. Johnson et al., “Amino acid structure and “difficult sequences” in solid phase peptide synthesis,” International Journal of Peptide and Protein Research, vol. 40, no. 3-4, pp. 300–307, 1992. View at Google Scholar · View at Scopus
  25. V. Cardona, I. Eberle, S. Barthélémy et al., “Application of Dmb-dipeptides in the Fmoc SPPS of difficult and aspartimide-prone sequences,” International Journal of Peptide Research and Therapeutics, vol. 14, no. 4, pp. 285–292, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Abdel Rahman, A. El-Kafrawy, A. Hattaba, and M. F. Anwer, “Optimization of solid-phase synthesis of difficult peptide sequences via comparison between different improved approaches,” Amino Acids, vol. 33, no. 3, pp. 531–536, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. S. C. F. Milton and L. R. C. De Milton, “An improved solid-phase synthesis of a difficult-sequence peptide using hexafluoro-2-propanol,” International Journal of Peptide and Protein Research, vol. 36, no. 2, pp. 193–196, 1990. View at Google Scholar · View at Scopus
  28. M. Erdélyi and A. Gogoll, “Rapid microwave-assisted solid phase peptide synthesis,” Synthesis, no. 11, pp. 1592–1596, 2002. View at Google Scholar · View at Scopus
  29. B. Bacsa, K. Horváti, S. Bõsze, F. Andreae, and C. O. Kappe, “Solid-phase synthesis of difficult peptide sequences at elevated temperatures: a critical comparison of microwave and conventional heating technologies,” Journal of Organic Chemistry, vol. 73, no. 19, pp. 7532–7542, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Loffredo, N. A. Assunção, J. Gerhardt, and M. T. M. Miranda, “Microwave-assisted solid-phase peptide synthesis at 60°C: alternative conditions with low enantiomerization,” Journal of Peptide Science, vol. 15, no. 12, pp. 808–817, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. A. El-Faham and F. Albericio, “Peptide coupling reagents, more than a letter soup,” Chemical Reviews, vol. 111, no. 11, pp. 6557–6602, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. S. A. Kates, N. A. Solé, M. Beyermann, G. Barany, and F. Albericio, “Optimized preparation of deca(L-Alanyl)-L-valinamide by 9-fluorenylmethyloxycarbonyl (fmoc) solid-phase synthesis on polyethylene glycol-polystyrene (PEG-PS) graft supports, with 1,8-diazobicyclo[5.4.0]-undec-7-ene (DBU) deprotection,” Peptide Research, vol. 9, no. 3, pp. 106–113, 1996. View at Google Scholar · View at Scopus
  33. T. Johnson, M. Quibell, D. Owen, and R. C. Sheppard, “A reversible protecting group for the amide bond in peptides. Use in the synthesis of “difficult sequences”,” Journal of the Chemical Society, no. 4, pp. 369–372, 1993. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Haack and M. Mutter, “Serine derived oxazolidines as secondary structure disrupting, solubilizing building blocks in peptide synthesis,” Tetrahedron Letters, vol. 33, no. 12, pp. 1589–1592, 1992. View at Publisher · View at Google Scholar · View at Scopus
  35. I. Coin, “The depsipeptide method for solid-phase synthesis of difficult peptides,” Journal of Peptide Science, vol. 16, no. 5, pp. 223–230, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. E. Y. Aleshina, N. V. Pyndyk, A. A. Moisa et al., “Synthesis of the β-amyloid fragment 5RHDSGY10 and its isomers,” Biochemistry, vol. 2, no. 3, pp. 288–292, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Hachmann and M. Lebl, “Alternative to piperidine in Fmoc solid-phase synthesis,” Journal of Combinatorial Chemistry, vol. 8, no. 2, p. 149, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. C. J. Bagley, K. M. Otteson, B. L. May et al., “Synthesis of insulin-like growth factor I using N-methyl pyrrolidinone as the coupling solvent and trifluoromethane sulphonic acid cleavage form the resin,” International Journal of Peptide and Protein Research, vol. 36, no. 4, pp. 356–361, 1990. View at Google Scholar · View at Scopus
  39. V. Krchnak, J. Vagner, P. Safar, and M. Lebl, “Noninvasive continuous monitoring of solid-phase peptide synthesis by acid-base indicator,” Collection of Czechoslovak Chemical Communications, vol. 53, pp. 2542–2549, 1988. View at Google Scholar
  40. A. K. Tickler, C. J. Barrow, and J. D. Wade, “Improved preparation of amyloid-β peptides using DBU as Nα-Fmoc deprotection reagent,” Journal of Peptide Science, vol. 7, no. 9, pp. 488–494, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. M. A. Hossain, R. A. D. Bathgate, C. K. Kong et al., “Synthesis, conformation, and activity of human insulin-like peptide 5 (INSL5),” ChemBioChem, vol. 9, no. 11, pp. 1816–1822, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. P. Y. Chou and G. D. Fasman, “Prediction of secondary structures of proteins,” Advances in Enzymology, vol. 47, pp. 45–146, 1978. View at Google Scholar
  43. A. Karlstrِm and A. Undén, “Design of protecting groups for the beta-carboxylic group of aspartic acid that minimize base-catalyzed aspartimide formation,” International Journal of Peptide and Protein Research, vol. 48, no. 4, pp. 305–311, 1996. View at Google Scholar
  44. M. Mergler, F. Dick, B. Sax, C. Stähelin, and T. Vorherr, “The aspartimide problem in Fmoc-based SPPS—part I,” Journal of Peptide Science, vol. 9, pp. 36–46, 2003. View at Google Scholar
  45. M. Mergler, F. Dick, B. Sax et al., “The aspartimide problem in Fmoc-based SPPS—part II,” Journal of Peptide Science, vol. 9, no. 8, pp. 518–526, 2003. View at Google Scholar
  46. M. Mergler and F. Dick, “The aspartimide problem in Fmoc-based SPPS—part III,” Journal of Peptide Science, vol. 11, no. 10, pp. 650–657, 2005. View at Publisher · View at Google Scholar · View at Scopus