Table of Contents
International Journal of Peptides
Volume 2013, Article ID 504260, 8 pages
http://dx.doi.org/10.1155/2013/504260
Research Article

Total Chemical Synthesis of a Heterodimeric Interchain Bis-Lactam-Linked Peptide: Application to an Analogue of Human Insulin-Like Peptide 3

1Bio21 Institute, University of Melbourne, Melbourne, VIC 3010, Australia
2The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
3School of Chemistry, University of Melbourne, Melbourne, VIC 3010, Australia
4CSIRO Materials Science & Engineering, Clayton, VIC 3168, Australia
5MRC Laboratory of Molecular Biology, Cambridge CB2 2QH, UK
6The Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
7Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia

Received 16 April 2013; Revised 31 August 2013; Accepted 2 September 2013

Academic Editor: Jean-Marie Zajac

Copyright © 2013 John Karas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Satkunanathan, B. Livett, K. Gayler, D. Sandall, J. Down, and Z. Khalil, “Alpha-conotoxin Vc1.1 alleviates neuropathic pain and accelerates functional recovery of injured neurones,” Brain Research, vol. 1059, no. 2, pp. 149–158, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. G. P. Miljanich, “Ziconotide: neuronal calcium channel blocker for treating severe chronic pain,” Current Medicinal Chemistry, vol. 11, no. 23, pp. 3029–3040, 2004. View at Google Scholar · View at Scopus
  3. M. T. Ma, J. A. Karas, J. M. White, D. Scanlon, and P. S. Donnelly, “A new bifunctional chelator for copper radiopharmaceuticals: a cage amine ligand with a carboxylate functional group for conjugation to peptides,” Chemical Communications, no. 22, pp. 3237–3239, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. F. G. Banting, C. H. Best, J. B. Collip, W. R. Campbell, and A. A. Fletcher, “Pancreatic extracts in the treatment of diabetes mellitus,” Canadian Medical Association Journal, vol. 12, no. 3, pp. 141–146, 1922. View at Google Scholar
  5. J. R. Teerlink, M. Metra, G. M. Felker et al., “Relaxin for the treatment of patients with acute heart failure (Pre-RELAX-AHF): a multicentre, randomised, placebo-controlled, parallel-group, dose-finding phase IIb study,” The Lancet, vol. 373, no. 9673, pp. 1429–1439, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. J. R. Teerlink, G. Cotter, B. A. Davison et al., “Serelaxin, recombinant human relaxin-2, for treatment of acute heart failure (RELAX-AHF): a randomised, placebo-controlled trial,” The Lancet, vol. 381, no. 9860, pp. 29–39, 2013. View at Publisher · View at Google Scholar
  7. X. Guo, J. Shi, Z. Tang, D. Cui, and Y. Zhang, “Synthesis and biological activity of seleno sunflower trypsin inhibitor analog,” Chemical Biology and Drug Design, vol. 68, no. 6, pp. 341–344, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. C. J. Armishaw, N. L. Daly, S. T. Nevin, D. J. Adams, D. J. Craik, and P. F. Alewood, “α-selenoconotoxins, a new class of potent α7 neuronal nicotinic receptor antagonists,” The Journal of Biological Chemistry, vol. 281, no. 20, pp. 14136–14143, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. Z. Dekan, I. Vetter, N. L. Daly, D. J. Craik, R. J. Lewis, and P. F. Alewood, “α-conotoxin ImI incorporating stable cystathionine bridges maintains full potency and identical three-dimensional structure,” Journal of the American Chemical Society, vol. 133, no. 40, pp. 15866–15869, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Holland-Nell and M. Meldal, “Maintaining biological activity by using triazoles as disufide bond mimetics,” Angewandte Chemie—International Edition, vol. 50, no. 22, pp. 5204–5206, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Empting, O. Avrutina, R. Meusinger et al., “‘Triazole bridge’: disulfide-bond replacement by ruthenium-catalyzed formation of 1,5-disubstituted 1,2,3-triazoles,” Angewandte Chemie—International Edition, vol. 50, no. 22, pp. 5207–5211, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Elaridi, J. Patel, W. R. Jackson, and A. J. Robinson, “Controlled synthesis of (S,S)-2,7-diaminosuberic acid: a method for regioselective construction of dicarba analogues of multicystine-containing peptides,” Journal of Organic Chemistry, vol. 71, no. 20, pp. 7538–7545, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. A. S. Cuthbertson, M. Husbyn, M. Engebretsen et al., “Design of low molecular weight hematoregulatory agents from the structure-activity relationship of a dimeric pentapeptide,” Journal of Medicinal Chemistry, vol. 40, no. 18, pp. 2876–2882, 1997. View at Publisher · View at Google Scholar · View at Scopus
  14. C. A. MacRaild, J. Illesinghe, B. J. van Lierop et al., “Structure and activity of (2,8)-dicarba-(3,12)-cystino α-ImI, an a-conotoxin containing a nonreducible cystine analogue,” Journal of Medicinal Chemistry, vol. 52, no. 3, pp. 755–762, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. J. DiMaio, J. Jaramillo, D. Wernic, L. Grenier, E. Welchner, and J. Adams, “Synthesis and biological activity of atrial natriuretic factor analogues: effect of modifications to the disulfide bridge,” Journal of Medicinal Chemistry, vol. 33, no. 2, pp. 661–667, 1990. View at Google Scholar · View at Scopus
  16. M. A. Hossain, K. J. Rosengren, S. Zhang et al., “Solid phase synthesis and structural analysis of novel A-chain dicarba analogs of human relaxin-3 (INSL7) that exhibit full biological activity,” Organic and Biomolecular Chemistry, vol. 7, no. 8, pp. 1547–1553, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Zhang, R. A. Hughes, R. A. D. Bathgate et al., “Role of the intra-A-chain disulfide bond of insulin-like peptide 3 in binding and activation of its receptor, RXFP2,” Peptides, vol. 31, no. 9, pp. 1730–1736, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. S. C. Koerber, J. Gulyas, S. L. Lahrichi et al., “Constrained corticotropin-releasing factor (CRF) agonists and antagonists with i-(i+3) Glu-Xaa-DXbb-Lys bridges,” Journal of Medicinal Chemistry, vol. 41, no. 25, pp. 5002–5011, 1998. View at Publisher · View at Google Scholar · View at Scopus
  19. M. D. Lanigan, M. W. Pennington, Y. Lefievre, H. Rauer, and R. S. Norton, “Designed peptide analogues of the potassium channel blocker ShK toxin,” Biochemistry, vol. 40, no. 51, pp. 15528–15537, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Dong, J. A. Te, X. Xu et al., “Lactam constraints provide insights into the receptor-bound conformation of secretin and stabilize a receptor antagonist,” Biochemistry, vol. 50, no. 38, pp. 8181–8192, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Grieco, P. M. Gitu, and V. J. Hruby, “Preparation of “side-chain-to-side-chain” cyclic peptides by Allyl and Alloc strategy: potential for library synthesis,” Journal of Peptide Research, vol. 57, no. 3, pp. 250–256, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. D. Limal, J. P. Briand, P. Dalbon, and M. Jolivet, “Solid-phase synthesis and on-resin cyclization of a disulfide bond peptide and lactam analogues corresponding to the major antigenic site of HIV gp41 protein,” Journal of Peptide Research, vol. 52, no. 2, pp. 121–129, 1998. View at Google Scholar · View at Scopus
  23. B. Hargittai, N. A. Solé, D. R. Groebe, S. N. Abramson, and G. Barany, “Chemical syntheses and biological activities of lactam analogues of α-conotoxin SI,” Journal of Medicinal Chemistry, vol. 43, no. 25, pp. 4787–4792, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Thurieau, P. Janiak, S. Krantic et al., “A new somatostatin analog with optimized ring size inhibits neointima formation induced by balloon injury in rats without altering growth hormone release,” European Journal of Medicinal Chemistry, vol. 30, no. 2, pp. 115–122, 1995. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Grieco, A. Carotenuto, R. Patacchini, C. A. Maggi, E. Novellino, and P. Rovero, “Design, synthesis, conformational analysis, and biological studies of urotensin-II lactam analogues,” Bioorganic and Medicinal Chemistry, vol. 10, no. 12, pp. 3731–3739, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. M. A. Fázio, V. X. Oliveira Jr., P. Bulet, M. T. M. Miranda, S. Daffre, and A. Miranda, “Structure-activity relationship studies of gomesin: importance of the disulfide bridges for conformation, bioactivities, and serum stability,” Biopolymers, vol. 84, no. 2, pp. 205–218, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. M. J. Spinella, A. B. Malik, J. Everitt, and T. T. Andersen, “Design and synthesis of a specific endothelin 1 antagonist: effects on pulmonary vasoconstriction,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 16, pp. 7443–7446, 1991. View at Google Scholar · View at Scopus
  28. W. M. Abraham, A. Ahmed, A. Cortes, M. J. Spinella, A. B. Malik, and T. T. Andersen, “A specific endothelin-1 antagonist blocks inhaled endothelin-1-induced bronchoconstriction in sheep,” Journal of Applied Physiology, vol. 74, no. 5, pp. 2537–2542, 1993. View at Google Scholar · View at Scopus
  29. E. E. Büllesbach and C. Schwabe, “Replacement of disulfides by amide bonds in the relaxin-like factor (RLF/INSL3) reveals a role for the A11-B10 link in transmembrane signaling,” Biochemistry, vol. 51, no. 20, pp. 4198–4205, 2012. View at Publisher · View at Google Scholar
  30. S. Zimmermann, G. Steding, J. M. A. Emmen et al., “Targeted disruption of the Insl3 gene causes bilateral cryptorchidism,” Molecular Endocrinology, vol. 13, no. 5, pp. 681–691, 1999. View at Google Scholar · View at Scopus
  31. F. Shabanpoor, F. Separovic, and J. D. Wade, “The human insulin superfamily of polypeptide hormones,” Vitamins and Hormones, vol. 80, pp. 1–31, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. R. A. Bathgate, S. Zhang, R. A. Hughes, K. J. Rosengren, and J. D. Wade, “The structural determinants of insulin-like peptide 3 activity,” Frontiers in Endocrinology, vol. 3, article 11, 2012. View at Publisher · View at Google Scholar
  33. D. J. Scott, T. N. Wilkinson, S. Zhang et al., “Defining the LGR8 residues involved in binding insulin-like peptide 3,” Molecular Endocrinology, vol. 21, no. 7, pp. 1699–1712, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. M. A. Hossain, K. J. Rosengren, L. M. Haugaard-Jönsson et al., “The A-chain of human relaxin family peptides has distinct roles in the binding and activation of the different relaxin family peptide receptors,” The Journal of Biological Chemistry, vol. 283, no. 25, pp. 17287–17297, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. M. P. Del Borgo, R. A. Hughes, R. A. D. Bathgate, F. Lin, K. Kawamura, and J. D. Wade, “Analogs of insulin-like peptide 3 (INSL3) B-chain are LGR8 antagonists in vitro and in vivo,” The Journal of Biological Chemistry, vol. 281, no. 19, pp. 13068–13074, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. F. Shabanpoor, R. A. Hughes, R. A. D. Bathgate et al., “Solid-phase synthesis of europium-labeled human INSL3 as a novel probe for the study of ligand-receptor interactions,” Bioconjugate Chemistry, vol. 19, no. 7, pp. 1456–1463, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Zhang, F. Lin, M. A. Hossain, F. Shabanpoor, G. W. Tregear, and J. D. Wade, “Simultaneous post-cysteine(S-Acm) group removal quenching of iodine and isolation of peptide by one step ether precipitation,” International Journal of Peptide Research and Therapeutics, vol. 14, no. 4, pp. 301–305, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. L. V. Najbar, D. J. Craik, J. D. Wade, D. Salvatore, and M. J. McLeish, “Conformational analysis of LYS(11–36), a peptide derived from the β-sheet region of T4 lysozyme, in TFE and SDS,” Biochemistry, vol. 36, no. 38, pp. 11525–11533, 1997. View at Publisher · View at Google Scholar · View at Scopus
  39. K. J. Rosengren, F. Lin, R. A. D. Bathgate et al., “Solution structure and novel insights into the determinants of the receptor specificity of human relaxin-3,” The Journal of Biological Chemistry, vol. 281, no. 9, pp. 5845–5851, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. A. K. Tickler, A. B. Clippingdale, and J. D. Wade, “Amyloid-β as a “difficult sequence” in solid phase peptide synthesis,” Protein and Peptide Letters, vol. 11, no. 4, pp. 377–384, 2004. View at Publisher · View at Google Scholar · View at Scopus