Table of Contents
International Journal of Plant Genomics
Volume 2008, Article ID 820274, 12 pages
http://dx.doi.org/10.1155/2008/820274
Review Article

Structural and Functional Genomics of Tomato

1Department of Soil, Plant, Environmental and Animal Production Sciences, University of Naples “Federico II”, Via Università 100, Portici 80055, Italy
2Ente per le Nuove Tecnologie, l'Energia e l'Ambiente, Casaccia Research Center, Via Anguillarese 301, S.M. di Galeria, Roma 00123, Italy
3CNR-Institute of Plant Genetics, Via Università 133, Portici 80055, Italy

Received 27 July 2007; Accepted 22 November 2007

Academic Editor: P. K. Gupta

Copyright © 2008 Amalia Barone et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. J. Michaelson, H. J. Price, J. R. Ellison, and J. S. Johnston, “Comparison of plant DNA contents determined by feulgen microspectrophotometry and laser flow cytometry,” American Journal of Botany, vol. 78, no. 2, pp. 183–188, 1991. View at Publisher · View at Google Scholar
  2. R. van der Hoeven, C. Ronning, J. Giovannoni, G. Martin, and S. D. Tanksley, “Deductions about the number, organization, and evolution of genes in the tomato genome based on analysis of a large expressed sequence tag collection and selective genomic sequencing,” The Plant Cell, vol. 14, no. 7, pp. 1441–1456, 2002. View at Publisher · View at Google Scholar
  3. L. A. Mueller, S. D. Tanskley, J. J. Giovannoni et al., “The tomato sequencing project, the first cornerstone of the International Solanaceae Project (SOL),” Comparative and Functional Genomics, vol. 6, no. 3, pp. 153–158, 2005. View at Publisher · View at Google Scholar
  4. L. A. Mueller, T. H. Solow, N. Taylor et al., “The SOL genomics network. A comparative resource for Solanaceae biology and beyond,” Plant Physiology, vol. 138, no. 3, pp. 1310–1317, 2005. View at Publisher · View at Google Scholar
  5. A. Frary, Y. Xu, J. Liu, S. Mitchell, E. Tedeschi, and S. D. Tanksley, “Development of a set of PCR-based anchor markers encompassing the tomato genome and evaluation of their usefulness for genetics and breeding experiments,” Theoretical and Applied Genetics, vol. 111, no. 2, pp. 291–312, 2005. View at Publisher · View at Google Scholar
  6. D. Shibata, “Genome sequencing and functional genomics approaches in tomato,” Journal of General Plant Pathology, vol. 71, no. 1, pp. 1–7, 2005. View at Publisher · View at Google Scholar
  7. T. M. Fulton, R. van der Hoeven, N. T. Eannetta, and S. D. Tanksley, “Identification, analysis, and utilization of conserved ortholog set markers for comparative genomics in higher plants,” The Plant Cell, vol. 14, no. 7, pp. 1457–1467, 2002. View at Publisher · View at Google Scholar
  8. F. Wu, L. A. Mueller, D. Crouzillat, V. Pétiard, and S. D. Tanksley, “Combining bioinformatics and phylogenetics to identify large sets of single-copy orthologous genes (COSII) for comparative, evolutionary and systematic studies: a test case in the euasterid plant clade,” Genetics, vol. 174, no. 3, pp. 1407–1420, 2006. View at Publisher · View at Google Scholar
  9. M. J. M. Smulders, G. Bredemeijer, W. Rus-Kortekaas, P. Arens, and B. Vosman, “Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species,” Theoretical and Applied Genetics, vol. 94, no. 2, pp. 264–272, 1997. View at Publisher · View at Google Scholar
  10. E. Asamizu, “Tomato genome sequencing: deciphering the euchromatin region of the chromosome 8,” Plant Biotechnology, vol. 24, no. 1, pp. 5–9, 2007. View at Google Scholar
  11. W. Yang, X. Bai, E. Kabelka et al., “Discovery of single nucleotide polymorphisms in Lycopersicon esculentum by computer aided analysis of expressed sequence tags,” Molecular Breeding, vol. 14, no. 1, pp. 21–34, 2004. View at Publisher · View at Google Scholar
  12. J. A. Labate and A. M. Baldo, “Tomato SNP discovery by EST mining and resequencing,” Molecular Breeding, vol. 16, no. 4, pp. 343–349, 2005. View at Publisher · View at Google Scholar
  13. S.-C. Sim, W. Yang, E. van der Knaap, S. Hogenhout, H. Xiao, and D. M. Francis, “Microarray-based SNP discovery for tomato genetics and breeding,” in Plant & Animal Genome XV Conference, p. 173, San Diego, Calif, USA, January 2007.
  14. Linkage Committee, “Linkage summary,” Tomato Genetics Cooperative, vol. 23, pp. 9–11, 1973. View at Google Scholar
  15. S. D. Tanksley, M. W. Ganal, J. P. Prince et al., “High density molecular linkage maps of the tomato and potato genomes,” Genetics, vol. 132, no. 4, pp. 1141–1160, 1992. View at Google Scholar
  16. J. A. Labate, S. Grandillo, T. Fulton et al., “Tomato,” in Genome Mapping and Molecular Breeding in Plants, C. Kole, Ed., pp. 1–125, Springer, New York, NY, USA, 2007. View at Google Scholar
  17. S. D. Tanksley, R. Bernatzky, N. L. V. Lapitan, and J. P. Prince, “Conservation of gene repertoire but not gene order in pepper and tomato,” Proceedings of the National Academy of Science of the United States of America, vol. 85, no. 17, pp. 6419–6423, 1988. View at Publisher · View at Google Scholar
  18. M. W. Bonierbale, R. L. Plaisted, and S. D. Tanksley, “RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato,” Genetics, vol. 120, no. 4, pp. 1095–1103, 1988. View at Google Scholar
  19. J. P. Prince, E. Pochard, and S. D. Tanksley, “Construction of a molecular linkage map of pepper and a comparison of synteny with tomato,” Genome, vol. 36, no. 3, pp. 404–417, 1993. View at Google Scholar
  20. K. D. Livingstone, V. K. Lackney, J. Blauth, R. van Wijk, and M. K. Jahn, “Genome mapping in Capsicum and the evolution of genome structure in the Solanaceae,” Genetics, vol. 152, no. 3, pp. 1183–1202, 1999. View at Google Scholar
  21. S. Doganlar, A. Frary, M.-C. Daunay, R. N. Lester, and S. D. Tanksley, “A comparative genetic linkage map of eggplant (Solanum melongena) and its implications for genome evolution in the Solanaceae,” Genetics, vol. 161, no. 4, pp. 1697–1711, 2002. View at Google Scholar
  22. J. D. Sherman and S. M. Stack, “Two-dimensional spreads of synaptonemal complexes from solanaceous plants—VI: high-resolution recombination nodule map for tomato (Lycopersicon esculentum),” Genetics, vol. 141, no. 2, pp. 683–708, 1995. View at Google Scholar
  23. D. G. Peterson, N. L. V. Lapitan, and S. M. Stack, “Localization of single- and low-copy sequences on tomato synaptonemal complex spreads using fluorescence in situ hybridization (FISH),” Genetics, vol. 152, no. 1, pp. 427–439, 1999. View at Google Scholar
  24. L. C. Harper and W. Z. Cande, “Mapping a new frontier; development of integrated cytogenetic maps in plants,” Functional & Integrative Genomics, vol. 1, no. 2, pp. 89–98, 2000. View at Publisher · View at Google Scholar
  25. Y. Wang, X. Tang, Z. Cheng, L. A. Mueller, J. Giovannoni, and S. D. Tanksley, “Euchromatin and pericentromeric heterochromatin: comparative composition in the tomato genome,” Genetics, vol. 172, no. 4, pp. 2529–2540, 2006. View at Publisher · View at Google Scholar
  26. B. Skwarecki, N. Taylor, T. Solow et al., “The solanaceae genomics network: data, methods, tools, and the tomato genome,” 2005, http://sgn.cornell.edu.
  27. N. D. Young, D. Zamir, M. W. Ganal, and S. D. Tanksley, “Use of isogenic lines and simultaneous probing to identify DNA markers tightly linked to the Tm-2a gene in tomato,” Genetics, vol. 120, no. 2, pp. 579–585, 1988. View at Google Scholar
  28. G. B. Martin, J. G. K. Williams, and S. D. Tanksley, “Rapid identification of markers linked to a Pseudomonas resistance gene in tomato by using random primers and near-isogenic lines,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 6, pp. 2336–2340, 1991. View at Publisher · View at Google Scholar
  29. A. H. Paterson, E. S. Lander, J. D. Hewitt, S. Peterson, S. E. Lincoln, and S. D. Tanksley, “Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms,” Nature, vol. 335, no. 6192, pp. 721–726, 1988. View at Publisher · View at Google Scholar
  30. M. C. deVicente and S. D. Tanksley, “QTL analysis of transgressive segregation in an interspecific tomato cross,” Genetics, vol. 134, no. 2, pp. 585–596, 1993. View at Google Scholar
  31. Y. Eshed and D. Zamir, “An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield- associated QTL,” Genetics, vol. 141, no. 3, pp. 1147–1162, 1995. View at Google Scholar
  32. S. D. Tanksley and J. C. Nelson, “Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines,” Theoretical and Applied Genetics, vol. 92, no. 2, pp. 191–203, 1996. View at Publisher · View at Google Scholar
  33. S. D. Tanksley, S. Grandillo, T. M. Fulton et al., “Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium,” Theoretical and Applied Genetics, vol. 92, no. 2, pp. 213–224, 1996. View at Publisher · View at Google Scholar
  34. S. Grandillo, S. D. Tanksley, and D. Zamir, “Exploitation of natural biodiversity through genomics,” in Genomics-Assisted Crop Improvement: Genomics Approaches and Platforms, R. K. Varshney and R. Tuberosa, Eds., pp. 121–150, Springer, New York, NY, USA, 2007. View at Google Scholar
  35. A. J. Monforte and S. D. Tanksley, “Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a L. esculentum genetic background: a tool for gene mapping and gene discovery,” Genome, vol. 43, no. 5, pp. 803–813, 2000. View at Publisher · View at Google Scholar
  36. A. J. Monforte, E. Friedman, D. Zamir, and S. D. Tanksley, “Comparison of a set of allelic QTL-NILs for chromosome 4 of tomato: deductions about natural variation and implications for germplasm utilization,” Theoretical and Applied Genetics, vol. 102, no. 4, pp. 572–590, 2001. View at Publisher · View at Google Scholar
  37. D. Zamir, “Improving plant breeding with exotic genetic libraries,” Nature Reviews Genetics, vol. 2, no. 12, pp. 983–989, 2001. View at Publisher · View at Google Scholar
  38. Y.-S. Liu, A. Gur, G. Ronen et al., “There is more to tomato fruit colour than candidate carotenoid genes,” Plant Biotechnology Journal, vol. 1, no. 3, pp. 195–207, 2003. View at Publisher · View at Google Scholar
  39. A. Gur, Y. Semel, A. Cahaner, and D. Zamir, “Real time QTL of complex phenotypes in tomato interspecific introgression lines,” Trends in Plant Science, vol. 9, no. 3, pp. 107–109, 2004. View at Publisher · View at Google Scholar
  40. Y. Eshed and D. Zamir, “Less-than-additive epistatic interactions of quantitative trait loci in tomato,” Genetics, vol. 143, no. 4, pp. 1807–1817, 1996. View at Google Scholar
  41. A. Gur and D. Zamir, “Unused natural variation can lift yield barriers in plant breeding,” PLoS Biology, vol. 2, no. 10, p. e245, 2004. View at Publisher · View at Google Scholar
  42. A. Frary, T. C. Nesbitt, A. Frary et al., “fw2.2: a quantitative trait locus key to the evolution of tomato fruit size,” Science, vol. 289, no. 5476, pp. 85–88, 2000. View at Publisher · View at Google Scholar
  43. E. Fridman, T. Pleban, and D. Zamir, “A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 9, pp. 4718–4723, 2000. View at Publisher · View at Google Scholar
  44. Y. Semel, J. Nissenbaum, N. Menda et al., “Overdominant quantitative trait loci for yield and fitness in tomato,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 35, pp. 12981–12986, 2006. View at Publisher · View at Google Scholar
  45. Z. B. Lippman and D. Zamir, “Heterosis: revisiting the magic,” Trends in Genetics, vol. 23, no. 2, pp. 60–66, 2007. View at Publisher · View at Google Scholar
  46. R. Finkers, A. W. van Heusden, F. Meijer-Dekens, J. A. L. van Kan, P. Maris, and P. Lindhout, “The construction of a Solanum habrochaites LYC4 introgression line population and the identification of QTLs for resistance to Botrytis cinerea,” Theoretical and Applied Genetics, vol. 114, no. 6, pp. 1071–1080, 2007. View at Publisher · View at Google Scholar
  47. S. Doganlar, A. Frary, H.-M. Ku, and S. D. Tanksley, “Mapping quantitative trait loci in inbred backcross lines of Lycopersicon pimpinellifolium (LA1589),” Genome, vol. 45, no. 6, pp. 1189–1202, 2002. View at Publisher · View at Google Scholar
  48. M. A. Canady, V. Meglic, and R. T. Chetelat, “A library of Solanum lycopersicoides introgression lines in cultivated tomato,” Genome, vol. 48, no. 4, pp. 685–697, 2005. View at Publisher · View at Google Scholar
  49. J. D. Peleman and J. R. van der Voort, “Breeding by design,” Trends in Plant Science, vol. 8, no. 7, pp. 330–334, 2003. View at Publisher · View at Google Scholar
  50. M. A. Budiman, S.-B. Chang, S. Lee et al., “Localization of jointless-2 gene in the centromeric region of tomato chromosome 12 based on high resolution genetic and physical mapping,” Theoretical and Applied Genetics, vol. 108, no. 2, pp. 190–196, 2004. View at Publisher · View at Google Scholar
  51. S. A. Peters, J. C. van Haarst, T. P. Jesse et al., “TOPAAS, a tomato and potato assembly assistance system for selection and finishing of bacterial artificial chromosomes,” Plant Physiology, vol. 140, no. 3, pp. 805–817, 2006. View at Publisher · View at Google Scholar
  52. D. Campagna, C. Romualdi, N. Vitulo et al., “RAP: a new computer program for de novo identification of repeated sequences in whole genomes,” Bioinformatics, vol. 21, no. 5, pp. 582–588, 2005. View at Publisher · View at Google Scholar
  53. H. Stubbe, “Mutanten der Kulturtomate Lycopersicon esculentum Miller V,” Genetic Resources and Crop Evolution, vol. 12, no. 1, pp. 121–152, 1964. View at Publisher · View at Google Scholar
  54. N. Menda, Y. Semel, D. Peled, Y. Eshed, and D. Zamir, “In silico screening of a saturated mutation library of tomato,” The Plant Journal, vol. 38, no. 5, pp. 861–872, 2004. View at Publisher · View at Google Scholar
  55. M. B. Cooley, A. P. Goldsbrough, D. W. Still, and J. I. Yoder, “Site selected insertional mutagenesis of tomato with maize Ac and Ds elements,” Molecular and General Genetics, vol. 252, no. 1-2, pp. 184–194, 1996. View at Publisher · View at Google Scholar
  56. R. Meissner, V. Chague, Q. Zhu, E. Emmanuel, Y. Elkind, and A. A. Levy, “Technical advance: a high throughput system for transposon tagging and promoter trapping in tomato,” The Plant Journal, vol. 22, no. 3, pp. 265–274, 2000. View at Publisher · View at Google Scholar
  57. E. Emmanuel and A. A. Levy, “Tomato mutants as tools for functional genomics,” Current Opinion in Plant Biology, vol. 5, no. 2, pp. 112–117, 2002. View at Publisher · View at Google Scholar
  58. H.-J. Sun, S. Uchii, S. Watanabe, and H. Ezura, “A highly efficient transformation protocol for Micro-Tom, a model cultivar for tomato functional genomics,” Plant & Cell Physiology, vol. 47, no. 3, pp. 426–431, 2006. View at Publisher · View at Google Scholar
  59. C. M. McCallum, L. Comai, E. A. Greene, and S. Henikoff, “Targeting induced local lesions IN genomes (TILLING) for plant functional genomics,” Plant Physiology, vol. 123, no. 2, pp. 439–442, 2000. View at Publisher · View at Google Scholar
  60. B. J. Till, T. Colbert, C. Codomo et al., “High-throughput TILLING for Arabidopsis,” Methods in Molecular Biology, vol. 323, pp. 127–135, 2006. View at Google Scholar
  61. A. J. Slade and V. C. Knauf, “TILLING moves beyond functional genomics into crop improvement,” Transgenic Research, vol. 14, no. 2, pp. 109–115, 2005. View at Publisher · View at Google Scholar
  62. C. J. S. Smith, C. F. Watson, C. R. Bird, J. Ray, W. Schuch, and D. Grierson, “Expression of a truncated tomato polygalacturonase gene inhibits expression of the endogenous gene in transgenic plants,” Molecular and General Genetics, vol. 224, no. 3, pp. 477–481, 1990. View at Publisher · View at Google Scholar
  63. J. Gray, S. Picton, J. Shabbeer, W. Schuch, and D. Grierson, “Molecular biology of fruit ripening and its manipulation with antisense genes,” Plant Molecular Biology, vol. 19, no. 1, pp. 69–87, 1992. View at Publisher · View at Google Scholar
  64. G. R. Davuluri, A. van Tuinen, P. D. Fraser et al., “Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes,” Nature Biotechnology, vol. 23, no. 7, pp. 890–895, 2005. View at Publisher · View at Google Scholar
  65. T. Valentine, J. Shaw, V. C. Blok, M. S. Phillips, K. J. Oparka, and C. Lacomme, “Efficient virus-induced gene silencing in roots using a modified tobacco rattle virus vector,” Plant Physiology, vol. 136, no. 4, pp. 3999–4009, 2004. View at Publisher · View at Google Scholar
  66. D.-Q. Fu, B.-Z. Zhu, H.-L. Zhu, W.-B. Jiang, and Y.-B. Luo, “Virus-induced gene silencing in tomato fruit,” The Plant Journal, vol. 43, no. 2, pp. 299–308, 2005. View at Publisher · View at Google Scholar
  67. Y. Liu, M. Schiff, and S. P. Dinesh-Kumar, “Virus-induced gene silencing in tomato,” The Plant Journal, vol. 31, no. 6, pp. 777–786, 2002. View at Publisher · View at Google Scholar
  68. X. Tao and X. Zhou, “A modified viral satellite DNA that suppresses gene expression in plants,” The Plant Journal, vol. 38, no. 5, pp. 850–860, 2004. View at Publisher · View at Google Scholar
  69. L. Giliberto, G. Perrotta, P. Pallara et al., “Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content,” Plant Physiology, vol. 137, no. 1, pp. 199–208, 2005. View at Publisher · View at Google Scholar
  70. G. Brigneti, A. M. Martín-Hernández, H. Jin et al., “Virus-induced gene silencing in Solanum species,” The Plant Journal, vol. 39, no. 2, pp. 264–272, 2004. View at Publisher · View at Google Scholar
  71. L. C. Hileman, S. Drea, G. de Martino, A. Litt, and V. F. Irish, “Virus-induced gene silencing is an effective tool for assaying gene function in the basal eudicot species Papaver somniferum (opium poppy),” The Plant Journal, vol. 44, no. 2, pp. 334–341, 2005. View at Publisher · View at Google Scholar
  72. T. M. Burch-Smith, M. Schiff, Y. Liu, and S. P. Dinesh-Kumar, “Efficient virus-induced gene silencing in Arabidopsis,” Plant Physiology, vol. 142, no. 1, pp. 21–27, 2006. View at Publisher · View at Google Scholar
  73. D. Orzaez, S. Mirabel, W. H. Wieland, and A. Granell, “Agroinjection of tomato fruits. A tool for rapid functional analysis of transgenes directly in fruit,” Plant Physiology, vol. 140, no. 1, pp. 3–11, 2006. View at Publisher · View at Google Scholar
  74. M. D. Wilkinson and M. Links, “BioMOBY: an open source biological web services proposal,” Briefings in Bioinformatics, vol. 3, no. 4, pp. 331–341, 2002. View at Publisher · View at Google Scholar
  75. S. Foissac, P. Bardou, A. Moisan, M.-J. Cros, and T. Schiex, “EUGÈNE'HOM: a generic similarity-based gene finder using multiple homologous sequences,” Nucleic Acids Research, vol. 31, no. 13, pp. 3742–3745, 2003. View at Publisher · View at Google Scholar
  76. K. Yano, M. Watanabe, N. Yamamoto et al., “MiBASE: a database of a miniature tomato cultivar Micro-Tom,” Plant Biotechnology, vol. 23, no. 2, pp. 195–198, 2006. View at Google Scholar
  77. Q. Dong, C. J. Lawrence, S. D. Schlueter et al., “Comparative plant genomics resources at PlantGDB,” Plant Physiology, vol. 139, no. 2, pp. 610–618, 2005. View at Publisher · View at Google Scholar
  78. M. S. Boguski, T. M. J. Lowe, and C. M. Tolstoshev, “dbEST—database for “expressed sequence tags”,” Nature Genetics, vol. 4, no. 4, pp. 332–333, 1993. View at Publisher · View at Google Scholar
  79. N. D'Agostino, M. Aversano, L. Frusciante, and M. L. Chiusano, “TomatEST database: in silico exploitation of EST data to explore expression patterns in tomato species,” Nucleic Acids Research, vol. 35, pp. D901–D905, 2007. View at Publisher · View at Google Scholar
  80. C. Lin, L. A. Mueller, J. M. Carthy, D. Crouzillat, V. Pétiard, and S. D. Tanksley, “Coffee and tomato share common gene repertoires as revealed by deep sequencing of seed and cherry transcripts,” Theoretical and Applied Genetics, vol. 112, no. 1, pp. 114–130, 2005. View at Publisher · View at Google Scholar
  81. N. D'Agostino, M. Aversano, and M. L. Chiusano, “ParPEST: a pipeline for EST data analysis based on parallel computing,” BMC Bioinformatics, vol. 6, 4, p. S9, 2005. View at Publisher · View at Google Scholar
  82. N. D'Agostino, A. Traini, L. Frusciante, and M. L. Chiusano, “Gene models from ESTs (GeneModelEST): an application on the Solanum lycopersicum genome,” BMC Bioinformatics, vol. 8, 1, p. S9, 2007. View at Publisher · View at Google Scholar
  83. S. Griffiths-Jones, A. Bateman, M. Marshall, A. Khanna, and S. R. Eddy, “Rfam: an RNA family database,” Nucleic Acids Research, vol. 31, no. 1, pp. 439–441, 2003. View at Publisher · View at Google Scholar
  84. S. Ouyang and C. R. Buell, “The TIGR plant repeat databases: a collective resource for the identification of repetitive sequences in plants,” Nucleic Acids Research, vol. 32, pp. D360–D363, 2004. View at Publisher · View at Google Scholar
  85. L. D. Stein, C. Mungall, S. Shu et al., “The generic genome browser: a building block for a model organism system database,” Genome Research, vol. 12, no. 10, pp. 1599–1610, 2002. View at Publisher · View at Google Scholar
  86. S. Torre, N. D'Agostino, M. L. Chiusano, L. Frusciante, A. Traini, and A. Barone, “BAC sequencing and annotation driven by experimental data: an application for a serine-threonine kinase on tomato chromosome 12,” Acta Horticulturae, vol. 2007, pp. 449–456.
  87. Z.-K. Li, B.-Y. Fu, Y.-M. Gao et al., “Genome-wide introgression lines and their use in genetic and molecular dissection of complex phenotypes in rice (Oryza sativa L.),” Plant Molecular Biology, vol. 59, no. 1, pp. 33–52, 2005. View at Publisher · View at Google Scholar