Table of Contents Author Guidelines Submit a Manuscript
International Journal of Plant Genomics
Volume 2009 (2009), Article ID 407426, 23 pages
Research Article

Transcriptomic Analysis of Starch Biosynthesis in the Developing Grain of Hexaploid Wheat

1Genomics and Gene Discovery Unit, USDA-ARS WRRC, 800 Buchanan Street, Albany, CA 94710, USA
2Department of Plant Sciences MS3, University of California-Davis, 1 Shields Avenue, Davis, CA 95618, USA
3Department of Neurology, School of Medicine, M.I.N.D Institute, University of California Medical Center, 2805 50th Street, Sacramento, CA 95817, USA

Received 12 May 2009; Revised 19 September 2009; Accepted 19 November 2009

Academic Editor: Hikmet Budak

Copyright © 2009 Boryana S. Stamova et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The expression of genes involved in starch synthesis in wheat was analyzed together with the accumulation profiles of soluble sugars, starch, protein, and starch granule distribution in developing caryopses obtained from the same biological materials used for profiling of gene expression using DNA microarrays. Multiple expression patterns were detected for the different starch biosynthetic gene isoforms, suggesting their relative importance through caryopsis development. Members of the ADP-glucose pyrophosphorylase, starch synthase, starch branching enzyme, and sucrose synthase gene families showed different expression profiles; expression of some members of these gene families coincided with a period of high accumulation of starch while others did not. A biphasic pattern was observed in the rates of starch and protein accumulation which paralleled changes in global gene expression. Metabolic and regulatory genes that show a pattern of expression similar to starch accumulation and granule size distribution were identified, suggesting their coinvolvement in these biological processes.