Table of Contents
International Journal of Plant Genomics
Volume 2011, Article ID 369460, 11 pages
http://dx.doi.org/10.1155/2011/369460
Research Article

Differential Expression of Three Flavanone 3-Hydroxylase Genes in Grains and Coleoptiles of Wheat

Institute of Plant Science and Resources, Okayama University, Okayama, Kurashiki 710-0046, Japan

Received 4 March 2011; Revised 27 June 2011; Accepted 27 June 2011

Academic Editor: Akhilesh Kumar Tyagi

Copyright © 2011 Eiko Himi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. A. Holton and E. C. Cornish, “Genetics and biochemistry of anthocyanin biosynthesis,” The Plant Cell, vol. 7, no. 7, pp. 1071–1083, 1995. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Himi, D. J. Mares, A. Yanagisawa, and K. Noda, “Effect of grain colour gene (R) on grain dormancy and sensitivity of the embryo to abscisic acid (ABA) in wheat,” Journal of Experimental Botany, vol. 53, no. 374, pp. 1569–1574, 2002. View at Google Scholar · View at Scopus
  3. R. A. McIntosh, Y. Yamazaki, J. Dubcovsky et al., Catalogue of Gene Symbols for Wheat, 2010.
  4. T. Miyamoto and E. H. Everson, “Biochemical and physiological studies of wheat seed pigmentation,” Agronomy Journal, vol. 50, pp. 733–734, 1958. View at Google Scholar
  5. E. Himi, A. Nisar, and K. Noda, “Colour genes (R and Rc) for grain and coleoptile upregulate flavonoid biosynthesis genes in wheat,” Genome, vol. 48, no. 4, pp. 747–754, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Winkel-Shirley, “Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology,” Plant Physiology, vol. 126, no. 2, pp. 485–493, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Mol, E. Grofewold, and R. Koes, “How genes paint flowers and seeds,” Trends in Plant Science, vol. 3, no. 6, pp. 212–217, 1998. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Nesi, C. Jond, I. Debeaujon, M. Caboche, and L. Lepiniec, “The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed,” The Plant Cell, vol. 13, no. 9, pp. 2099–2114, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Himi, M. Maekawa, H. Miura, and K. Noda, “Development of PCR markers for Tamyb10 related to R-1, red grain color gene in wheat,” Theoretical and Applied Genetics. In press.
  10. U. Hartmann, M. Sagasser, F. Mehrtens, R. Stracke, and B. Weisshaar, “Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes,” Plant Molecular Biology, vol. 57, no. 2, pp. 155–171, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. E. Himi and K. Noda, “Isolation and location of three homoeologous dihydroflavonol-4-reductase (DFR) genes of wheat and their tissue-dependent expression,” Journal of Experimental Botany, vol. 55, no. 396, pp. 365–375, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Meldgaard, “Expression of chalcone synthase, dihydroflavonol reductase, and flavanone-3-hydroxylase in mutants of barley deficient in anthocyanin and proanthocyanidin biosynthesis,” Theoretical and Applied Genetics, vol. 83, no. 6-7, pp. 695–706, 1992. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Aravind and E. V. Koonin, “The DNA-repair protein AlkB, EGL-9, and leprecan define new families of 2-oxoglutarate- and iron-dependent dioxygenases,” Genome biology, vol. 2, no. 3, 2001. View at Google Scholar · View at Scopus
  14. R. Lukacin and L. Britsch, “Identification of strictly conserved histidine and arginine residues as part of the active site in Petunia hybrida flavanone 3β-hydroxylase,” European Journal of Biochemistry, vol. 249, no. 3, pp. 748–757, 1997. View at Google Scholar
  15. E. K. Khlestkina, M. S. Roder, and E. A. Salina, “Relationship between homoeologous regulatory and structural genes in allopolyploid genome—a case study in bread wheat,” BMC Plant Biology, vol. 8, article 88, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. N. Kurata, G. Moore, Y. Nagamura et al., “Conservation of genome structure between rice and wheat,” Bio/Technology, vol. 12, no. 3, pp. 276–278, 1994. View at Publisher · View at Google Scholar · View at Scopus
  17. M. E. Sorells, M. La Rota, C. E. Bermudez-Kandianis et al., “Comparative DNA sequence analysis of wheat and rice genomes,” Genome Research, vol. 13, no. 8, pp. 1818–1827, 2003. View at Google Scholar · View at Scopus
  18. E. Himi and K. Noda, “Red grain colour gene (R) of wheat is a Myb-type transcription factor,” Euphytica, vol. 143, no. 3, pp. 239–242, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Kagaya, K. Ohmiya, and T. Hattori, “RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants,” Nucleic Acids Research, vol. 27, no. 2, pp. 470–478, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Fowler and M. F. Thomashow, “Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway,” The Plant Cell, vol. 14, no. 8, pp. 1675–1690, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Leyva, J. A. Jarillo, J. Salinas, and J. M. Martinez-Zapater, “Low temperature induces the accumulation of Phenylalanine ammonia-lyase and Chalcone synthase mRNAs of Arabidopsis thaliana in a light-dependent manner,” Plant Physiology, vol. 108, no. 1, pp. 39–46, 1995. View at Google Scholar · View at Scopus
  22. M. Shvarts, A. Borochov, and D. Weiss, “Low temperature enhances petunia flower pigmentation and induced chalcone synthase gene expression,” Physiologia Plantarum, vol. 99, no. 1, pp. 67–72, 1997. View at Publisher · View at Google Scholar · View at Scopus
  23. J. F. Martinez-Garcia, E. Moyano, M. J. Alcocer, and C. Martin, “Two bZIP proteins from Antirrhinum flowers preferentially bind a hybrid C-box/G-box motif and help to define a new sub-family of bZIP transcription factors,” Plant Journal, vol. 13, no. 4, pp. 489–505, 1998. View at Publisher · View at Google Scholar · View at Scopus