Table of Contents
International Journal of Plant Genomics
Volume 2012, Article ID 581460, 9 pages
http://dx.doi.org/10.1155/2012/581460
Research Article

Application of Phosphoproteomics to Find Targets of Casein Kinase 1 in the Flagellum of Chlamydomonas

Institute of General Botany and Plant Physiology, Friedrich Schiller University Jena, Am Planetarium 1, 07743 Jena, Germany

Received 2 August 2012; Accepted 10 November 2012

Academic Editor: Jaroslav Doležel

Copyright © 2012 Jens Boesger et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. J. Pazour and G. B. Witman, “The vertebrate primary cilium is a sensory organelle,” Current Opinion in Cell Biology, vol. 15, no. 1, pp. 105–110, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. J. L. Rosenbaum and G. B. Witman, “Intraflagellar transport,” Nature Reviews Molecular Cell Biology, vol. 3, no. 11, pp. 813–825, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. S. S. Merchant, S. E. Prochnik, O. Vallon et al., “The Chlamydomonas genome reveals the evolution of key animal and plant functions,” Science, vol. 318, no. 5848, pp. 245–251, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. G. J. Pazour, N. Agrin, J. Leszyk, and G. B. Witman, “Proteomic analysis of a eukaryotic cilium,” The Journal of Cell Biology, vol. 170, no. 1, pp. 103–113, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. W. F. Marshall, “The cell biological basis of ciliary disease,” The Journal of Cell Biology, vol. 180, no. 1, pp. 17–21, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Reinders and A. Sickmann, “Modificomics: posttranslational modifications beyond protein phosphorylation and glycosylation,” Biomolecular Engineering, vol. 24, no. 2, pp. 169–177, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Rolland, A. Atteia, P. Decottignies et al., “Chlamydomonas proteomics,” Current Opinion in Microbiology, vol. 12, no. 3, pp. 285–291, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. V. Wagner, J. Boesger, and M. Mittag, “Sub-proteome analysis in the green flagellate alga Chlamydomonas reinhardtii,” Journal of Basic Microbiology, vol. 49, no. 1, pp. 32–41, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. A. V. Vener, “Environmentally modulated phosphorylation and dynamics of proteins in photosynthetic membranes,” Biochimica et Biophysica Acta, vol. 1767, no. 6, pp. 449–457, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. V. Wagner, K. Ullmann, A. Mollwo, M. Kaminski, M. Mittag, and G. Kreimer, “The phosphoproteome of a Chlamydomonas reinhardtii eyespot fraction includes key proteins of the light signaling pathway,” Plant Physiology, vol. 146, no. 2, pp. 772–788, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Boesger, V. Wagner, W. Weisheit, and M. Mittag, “Analysis of flagellar phosphoproteins from Chlamydomonas reinhardtii,” Eukaryotic Cell, vol. 8, no. 7, pp. 922–932, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Pan, B. Naumann-Busch, L. Wang et al., “Protein phosphorylation is a key event of flagellar disassembly revealed by analysis of flagellar phosphoproteins during flagellar shortening in Chlamydomonas,” Journal of Proteome Research, vol. 10, no. 8, pp. 3830–3839, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. M. E. Porter and W. S. Sale, “The 9 + 2 axoneme anchors multiple inner arm dyneins and a network of kinases and phosphatases that control motility,” The Journal of Cell Biology, vol. 151, no. 5, pp. F37–F42, 2000. View at Google Scholar · View at Scopus
  14. P. Yang and W. S. Sale, “Casein kinase I is anchored on axonemal doublet microtubules and regulates flagellar dynein phosphorylation and activity,” The Journal of Biological Chemistry, vol. 275, no. 25, pp. 18905–18912, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Gokhale, M. Wirschell, and W. S. Sale, “Regulation of dynein-driven microtubule sliding by the axonemal protein kinase CK1 in Chlamydomonas flagella,” The Journal of Cell Biology, vol. 186, no. 6, pp. 817–824, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Wirschell, R. Yamamoto, L. Alford, A. Gokhale, A. Gaillard, and W. S. Sale, “Regulation of ciliary motility: conserved protein kinases and phosphatases are targeted and anchored in the ciliary axoneme,” Archives of Biochemistry and Biophysics, vol. 510, no. 2, pp. 93–100, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Schmidt, G. Geßner, M. Luff et al., “Proteomic analysis of the eyespot of Chlamydomonas reinhardtii provides novel insights into its components and tactic movements,” The Plant Cell, vol. 18, no. 8, pp. 1908–1930, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Matsuo, K. Okamoto, K. Onai, Y. Niwa, K. Shimogawara, and M. Ishiura, “A systematic forward genetic analysis identified components of the Chlamydomonas circadian system,” Genes and Development, vol. 22, no. 7, pp. 918–930, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Serrano, R. Herrera-Palau, J. M. Romero, A. Serrano, G. Coupland, and F. Valverde, “Chlamydomonas CONSTANS and the evolution of plant photoperiodic signaling,” Current Biology, vol. 19, no. 5, pp. 359–368, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Sambrook and D. W. Russel, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA, 2001.
  21. E. H. Harris, The Chlamydomonas Sourcebook, Academic Press, San Diego, Calif, USA, 1989.
  22. V. Neuhoff, K. Philipp, H. G. Zimmer, and S. Mesecke, “A simple, versatile, sensitive and volume-independent method for quantitative protein determination which is independent of other external influences,” Hoppe-Seyler's Zeitschrift für Physiologische Chemie, vol. 360, no. 11, pp. 1657–1670, 1979. View at Google Scholar · View at Scopus
  23. T. Schulze, S. Schreiber, D. Iliev et al., “The heme-binding protein SOUL3 of Chlamydomonas reinhardtii influences size and position of the eyespot,” Molecular Plant. In press.
  24. F. Preuss, J. Y. Fan, M. Kalive et al., “Drosophila doubletime mutations which either shorten or lengthen the period of circadian rhythms decrease the protein kinase activity of casein kinase I,” Molecular and Cellular Biology, vol. 24, no. 2, pp. 886–898, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. A. J. Link, J. Eng, D. M. Schieltz et al., “Direct analysis of protein complexes using mass spectrometry,” Nature Biotechnology, vol. 17, no. 7, pp. 676–682, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Wirschell, T. Hendrickson, and W. S. Sale, “Keeping an eye on I1:I1 dynein as a model for flagellar dynein assembly and regulation,” Cell Motility and the Cytoskeleton, vol. 64, no. 8, pp. 569–579, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. N. F. Wilson and P. A. Lefebvre, “Regulation of flagellar assembly by glycogen synthase kinase 3 in Chlamydomonas reinhardtii,” Eukaryotic Cell, vol. 3, no. 5, pp. 1307–1319, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Harms, M. W. Young, and L. Saez, “CK1 and GSK3 in the Drosophila and mammalian circadian clock,” Novartis Foundation Symposium, vol. 253, pp. 267–277, 2003. View at Google Scholar · View at Scopus
  29. A. Gururaj, C. J. Barnes, R. K. Vadlamudi, and R. Kumar, “Regulation of phosphoglucomutase 1 phosphorylation and activity by a signaling kinase,” Oncogene, vol. 23, no. 49, pp. 8118–8127, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. M. A. Pajares, C. Durán, F. Corrales, and J. M. Mato, “Protein kinase C phosphorylation of rat liver S-adenosylmethionine synthetase: dissociation and production of an active monomer,” Biochemical Journal, vol. 303, no. 3, pp. 949–955, 1994. View at Google Scholar · View at Scopus
  31. T. W. Hendrickson, C. A. Perrone, P. Griffin et al., “IC138 is a WD-repeat dynein intermediate chain required for light chain assembly and regulation of flagellar bending,” Molecular Biology of the Cell, vol. 15, no. 12, pp. 5431–5442, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. K. E. VanderWaal, R. Yamamoto, K. Wakabayashi et al., “bop5 mutations reveal new roles for the IC138 phosphoprotein in the regulation of flagellar motility and asymmetric waveforms,” Molecular Biology of the Cell, vol. 22, no. 16, pp. 2862–2874, 2011. View at Publisher · View at Google Scholar
  33. S. Takada, C. G. Wilkerson, K. I. Wakabayashi, R. Kamiya, and G. B. Witman, “The outer dynein arm-docking complex: composition and characterization of a subunit (Oda1) necessary for outer arm assembly,” Molecular Biology of the Cell, vol. 13, no. 3, pp. 1015–1029, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. A. M. Curry and J. L. Rosenbaum, “Flagellar radial spoke: a model molecular genetic system for studying organelle assembly,” Cell Motility and the Cytoskeleton, vol. 24, no. 4, pp. 224–232, 1993. View at Google Scholar · View at Scopus
  35. P. Yang, D. R. Diener, C. Yang et al., “Radial spoke proteins of Chlamydomonas flagella,” Journal of Cell Science, vol. 119, part 6, pp. 1165–1174, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. G. Keryer, Z. Luo, J. C. Cavadore, J. Erlichman, and M. Bornens, “Phosphorylation of the regulatory subunit of type IIβ cAMP-dependent protein kinase by cyclin B/p34(cdc2) kinase impairs its binding to microtubule-associated protein 2,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 12, pp. 5418–5422, 1993. View at Google Scholar · View at Scopus
  37. S. Manni, J. H. Mauban, C. W. Ward, and M. Bond, “Phosphorylation of the cAMP-dependent protein kinase (PKA) regulatory subunit modulates PKA-AKAP interaction, substrate phosphorylation, and calcium signaling in cardiac cells,” The Journal of Biological Chemistry, vol. 283, no. 35, pp. 24145–24154, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. A. R. Gaillard, L. A. Fox, J. M. Rhea, B. Craige, and W. S. Sale, “Disruption of the A-kinase anchoring domain in flagellar radial spoke protein 3 results in unregulated axonemal cAMP-dependent protein kinase activity and abnormal flagellar motility,” Molecular Biology of the Cell, vol. 17, no. 6, pp. 2626–2635, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. E. H. Harris, The Chlamydomonas Sourcebook, vol. 3, Academic Press, San Diego, Calif, USA, 2009.
  40. M. A. Price and D. Kalderon, “Proteolysis of the Hedgehog signaling effector Cubitus interruptus requires phosphorylation by Glycogen Synthase Kinase 3 and Casein Kinase 1,” Cell, vol. 108, no. 6, pp. 823–835, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. L. Kim, J. Liu, and A. R. Kimmel, “The novel tyrosine kinase ZAK1 activates GSK3 to direct cell fate specification,” Cell, vol. 99, no. 4, pp. 399–408, 1999. View at Google Scholar · View at Scopus
  42. H. Murai, M. Okazaki, and A. Kikuchi, “Tyrosine dephosphorylation of glycogen synthase kinase-3 is involved in its extracellular signal-dependent inactivation,” FEBS Letters, vol. 392, no. 2, pp. 153–160, 1996. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Panda, J. B. Hogenesch, and S. A. Kay, “Circadian rhythms from flies to human,” Nature, vol. 417, no. 6886, pp. 329–335, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. M. L. Spengler, K. K. Kuropatwinski, M. Schumer, and M. P. Antoch, “A serine cluster mediates BMAL1-dependent CLOCK phosphorylation and degradation,” Cell Cycle, vol. 8, no. 24, pp. 4138–4146, 2009. View at Google Scholar · View at Scopus
  45. M. Mittag, S. Kiaulehn, and C. H. Johnson, “The circadian clock in Chlamydomonas reinhardtii. What is it for? What is it similar to?” Plant Physiology, vol. 137, no. 2, pp. 399–409, 2005. View at Publisher · View at Google Scholar · View at Scopus