Table of Contents
International Journal of Plant Genomics
Volume 2012, Article ID 949038, 9 pages
http://dx.doi.org/10.1155/2012/949038
Research Article

Molecular Breeding to Improve Salt Tolerance of Rice (Oryza sativa L.) in the Red River Delta of Vietnam

1Agricultural Genetics Institute, Tu Liem, Hanoi, Vietnam
2Graduate School for International Development and Cooperation (IDEC), Hiroshima University, Hiroshima 739-8529, Japan
3International Rice Research Institute, College, Los Baños, Laguna, Philippines

Received 13 July 2012; Revised 13 September 2012; Accepted 14 November 2012

Academic Editor: Akhilesh Kumar Tyagi

Copyright © 2012 Le Hung Linh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Negrão, B. Courtois, N. Ahmadi, I. Abreu, N. Saibo, and M. M. Oliveira, “Recent updates on salinity stress in rice: from physiological to molecular responses,” Critical Reviews in Plant Sciences, vol. 30, no. 4, pp. 329–377, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. Food and Agriculture Organization, “Report of salt affected agriculture,” 2010, http://www.fao.org/ag/agl/agll/spush/.
  3. R. Nazar, N. Iqbal, A. Masood, S. Syeed, and N. A. Khan, “Understanding the significance of sulfur in improving salinity tolerance in plants,” Environmental and Experimental Botany, vol. 70, no. 2-3, pp. 80–87, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. World Rice Statistics, http://www.irri.org.
  5. M. H. Nguyen, P. V. Thu, and N. T. Cuong, “Evaluating arable soil composition in order to well manage the soil resource of Vietnam,” in Proceedings of the 9th Workshop of Vietnam Institute of Meteorology Hydrology and Environment, vol. 9, pp. 437–442, Vietnam, 2006.
  6. Ministry of Agriculture and Rural Development, “Vietnam News Agency,” 2005.
  7. Z. H. Ren, J. P. Gao, L. G. Li et al., “A rice quantitative trait locus for salt tolerance encodes a sodium transporter,” Nature Genetics, vol. 37, no. 10, pp. 1141–1146, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Singh, A. Kumar, A. S. Kumar et al., “Marker assisted selection and crop management for salt tolerance: a review,” African Journal Biotechnology, vol. 10, no. 66, pp. 14694–14698, 2011. View at Google Scholar
  9. P. Bonilla, J. Dvorak, D. Mackill, K. Deal, and G. Gregorio, “RFLP and SSLP mapping of salinity tolerance genes in chromosome 1 of rice (Oryza sativa L.) using recombinant inbred lines,” Philippine Agricultural Scientist, vol. 65, no. 1, pp. 68–76, 2002. View at Google Scholar · View at Scopus
  10. H. Takehisa, T. Shimodate, Y. Fukuta et al., “Identification of quantitative trait loci for plant growth of rice in paddy field flooded with salt water,” Field Crops Research, vol. 89, no. 1, pp. 85–95, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. C. N. Neeraja, R. Maghirang-Rodriguez, A. Pamplona et al., “A marker-assisted backcross approach for developing submergence-tolerant rice cultivars,” Theoretical and Applied Genetics, vol. 115, no. 6, pp. 767–776, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Hospital, “Marker-assisted breeding,” in Plant Molecular Breeding, H. J. Newbury, Ed., pp. 30–59, Blackwell Publishing, Oxford, UK, 2003. View at Google Scholar
  13. M. Frisch and A. E. Melchinger, “Selection theory for marker-assisted backcrossing,” Genetics, vol. 170, no. 2, pp. 909–917, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Chen, X. H. Lin, C. G. Xu, and Q. Zhang, “Improvement of bacterial blight resistance of 'Minghui 63', an elite restorer line of hybrid rice, by molecular marker-assisted selection,” Crop Science, vol. 40, no. 1, pp. 239–244, 2000. View at Google Scholar · View at Scopus
  15. S. Chen, C. G. Xu, X. H. Lin, and Q. Zhang, “Improving bacterial blight resistance of '6078', an elite restorer line of hybrid rice, by molecular marker-assisted selection,” Plant Breeding, vol. 120, no. 2, pp. 133–137, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. P. H. Zhou, Y. F. Tan, Y. Q. He, C. G. Xu, and Q. Zhang, “Simultaneous improvement for four quality traits of Zhenshan 97, an elite parent of hybrid rice, by molecular marker-assisted selection,” Theoretical and Applied Genetics, vol. 106, no. 2, pp. 326–331, 2003. View at Google Scholar · View at Scopus
  17. D. J. Mackill, “Breeding for resistance to abiotic stresses in rice: the value of quantitative trait loci,” in Plant Breeding, K. R. Lamkey and M. Lee, Eds., pp. 201–212, Blackwell Publishing, Ames, Iowa, 2006. View at Google Scholar
  18. B. C. Y. Collard and D. J. Mackill, “Marker-assisted selection: an approach for precision plant breeding in the twenty-first century,” Philosophical Transactions of the Royal Society B, vol. 363, no. 1491, pp. 557–572, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Zheng, P. K. Subudhi, J. Domingo, G. Magpantay, and N. Huang, “Rapid DNA isolation for marker assisted selection in rice breeding,” Rice Genetics News Letter, vol. 12, pp. 255–258, 1995. View at Google Scholar
  20. S. R. McCouch, L. Teytelman, Y. Xu et al., “Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.),” DNA Research, vol. 9, no. 6, pp. 199–207, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. SSR Marker, 2011, http://www.gramene.org/.
  22. R. Van Berloo, “GGT 2.0: versatile software for visualization and analysis of genetic data,” Journal of Heredity, vol. 99, no. 2, pp. 232–236, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. J. U. Jeung, H. G. Hwang, H. P. Moon, and K. K. Jena, “Fingerprinting temperate japonica and tropical indica rice genotypes by comparative analysis of DNA markers,” Euphytica, vol. 146, no. 3, pp. 239–251, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. U. S. Yeo and J. K. Shon, “Linkage analysis between some agronomic traits and resistance gene to brown planthopper in rice,” Korean Journal in Plant Breeding, vol. 33, no. 4, pp. 287–293, 2001. View at Google Scholar
  25. N. T. Lang, B. C. Buu, and A. M. Ismail, “Molecular mapping and marker assisted selection for salt tolerance in rice (Oryza sativa L.),” Omonrice, vol. 16, pp. 50–56, 2008. View at Google Scholar
  26. C. M. F. Elahi, Z. I. Seraj, N. M. Rasul et al., “Breeding rice for salinity tolerance using the Pokkali allele: finding a linked marker,” in In Vitro Culture, TransFormation and Molecular Markers for Crop Improvement, A. S. Islam, Ed., pp. 157–169, Science Publisher, NH, USA, 2004. View at Google Scholar
  27. J. Jairin, S. Teangdeerith, P. Leelagud et al., “Development of rice introgression lines with brown planthopper resistance and KDML105 grain quality characteristics through marker-assisted selection,” Field Crops Research, vol. 110, no. 3, pp. 263–271, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. D. J. Mackill, “Molecular markers and marker-assisted selection in rice,” in Genomic Assisted Crop Improvement, Genomics Applications in Crops, R. K. Varshney and R. Tuberosa, Eds., vol. 2, pp. 147–169, Springer, New York, NY, USA, 2007. View at Google Scholar
  29. M. J. Thomson, M. de Ocampo, J. Egdane et al., “Characterizing the saltol quantitative trait locus for salinity tolerance in rice,” Rice, pp. 1–13, 2010. View at Publisher · View at Google Scholar · View at Scopus