Table of Contents
International Journal of Proteomics
Volume 2012 (2012), Article ID 832569, 24 pages
http://dx.doi.org/10.1155/2012/832569
Research Article

Proteomic and Bioinformatics Analyses of Mouse Liver Microsomes

1Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Hunan, Changsha 410008, China
2Department of Biology, School of Pharmacy and Life Science, University of South China, Hengyang 421001, China

Received 28 July 2011; Revised 9 November 2011; Accepted 20 November 2011

Academic Editor: Visith Thongboonkerd

Copyright © 2012 Fang Peng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. He, “Human liver proteome project: plan, progress, and perspectives,” Molecular and Cellular Proteomics, vol. 4, no. 12, pp. 1841–1848, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. E. Jung, M. Heller, J. C. Sanchez, and D. F. Hochstrasser, “Proteomics meets cell biology: the establishment of subcellular proteomes,” Electrophoresis, vol. 21, no. 16, pp. 3369–3377, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. S. W. Taylor, E. Fahy, and S. S. Ghosh, “Global organellar proteomics,” Trends in Biotechnology, vol. 21, no. 2, pp. 82–88, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. F. S. Heinemann and J. Ozols, “Isolation and structural analysis of microsomal membrane proteins,” Frontiers in Bioscience, vol. 3, pp. 483–493, 1998. View at Google Scholar · View at Scopus
  5. D. M. Wong and K. Adeli, “Microsomal proteomics,” Methods in Molecular Biology, vol. 519, pp. 273–289, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Okuzawa, B. Franzen, J. Lindholm et al., “Characterization of gene expression in clinical lung cancer materials by two-dimensional polyacrylamide gel electrophoresis,” Electrophoresis, vol. 15, no. 3-4, pp. 382–390, 1994. View at Google Scholar · View at Scopus
  7. P. Chen, L. Zhang, X. Li et al., “Evaluation of strategy for analyzing mouse liver plasma membrane proteome,” Science in China Series C, vol. 50, no. 6, pp. 731–738, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. N. Galeva and M. Altermann, “Comparison of one-dimensional and two-dimensional gel electrophoresis as a separation tool for proteomic analysis of rat liver microsomes: cytochromes P450 and other membrane proteins,” Proteomics, vol. 2, no. 6, pp. 713–722, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. I. P. Kanaeva, N. A. Petushkova, A. V. Lisitsa et al., “Proteomic and biochemical analysis of the mouse liver microsomes,” Toxicology In Vitro, vol. 19, no. 6, pp. 805–812, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. V. Santoni, M. Molloy, and T. Rabilloud, “Membrane proteins and proteomics: un amour impossible?” Electrophoresis, vol. 21, no. 6, pp. 1054–1070, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Friso, L. Giacomelli, A. J. Ytterberg et al., “In-depth analysis of the thylakoid membrane proteome of Arabidopsis thaliana chloroplasts: new proteins, new functions, and a plastid proteome database,” Plant Cell, vol. 16, no. 2, pp. 478–499, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. Y. Fujiki, A. L. Hubbard, S. Fowler, and P. B. Lazarow, “Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum,” Journal of Cell Biology, vol. 93, no. 1, pp. 97–102, 1982. View at Google Scholar · View at Scopus
  13. S. Fleischer and M. Kervina, “Subcellular fractionation of rat liver,” Methods in Enzymology, vol. 31, pp. 6–41, 1974. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Candiano, M. Bruschi, L. Musante et al., “Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis,” Electrophoresis, vol. 25, no. 9, pp. 1327–1333, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. S. Maere, K. Heymans, and M. Kuiper, “BiNGO: a cytoscape plugin to assess overrepresentation of Gene Ontology categories in Biological Networks,” Bioinformatics, vol. 21, no. 16, pp. 3448–3449, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. P. Shannon, A. Markiel, O. Ozier et al., “Cytoscape: a software environment for integrated models of biomolecular interaction networks,” Genome Research, vol. 13, no. 11, pp. 2498–2504, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. B. Zhang, S. Kirov, and J. Snoddy, “WebGestalt: an integrated system for exploring gene sets in various biological contexts,” Nucleic Acids Research, vol. 33, no. 2, pp. W741–W748, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. V. Zgoda, O. Tikhonova, A. Viglinskaya, M. Serebriakova, A. Lisitsa, and A. Archakov, “Proteomic profiles of induced hepatotoxicity at the subcellular level,” Proteomics, vol. 6, no. 16, pp. 4662–4670, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. V. G. Zgoda, S. A. Moshkovskii, E. A. Ponomarenko et al., “Proteomics of mouse liver microsomes: performance of different protein separation workflows for LC-MS/MS,” Proteomics, vol. 9, no. 16, pp. 4102–4105, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. A. Gilchrist, C. E. Au, J. Hiding et al., “Quantitative proteomics analysis of the secretory pathway,” Cell, vol. 127, no. 6, pp. 1265–1281, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. J. Kyte and R. F. Doolittle, “A simple method for displaying the hydropathic character of a protein,” Journal of Molecular Biology, vol. 157, no. 1, pp. 105–132, 1982. View at Google Scholar · View at Scopus
  22. C. Adessi, C. Miege, C. Albrieux, and T. Rabilloud, “Two-dimensional electrophoresis of membrane proteins: a current challenge for immobilized pH gradients,” Electrophoresis, vol. 18, no. 1, pp. 127–135, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. M. Zhang, P. Hu, and J. L. Napoli, “Elements in the N-terminal signaling sequence that determine cytosolic topology of short-chain dehydrogenases/reductases: studies with retinol dehydrogenase type 1 and cis-retinol/androgen dehydrogenase type 1,” Journal of Biological Chemistry, vol. 279, no. 49, pp. 51482–51489, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. R. Zanetti and A. Catala, “Interaction of fatty acid binding protein with microsomes: removal of palmitic acid and retinyl esters,” Archives Internationales de Physiologie et de Biochimie, vol. 98, no. 4, pp. 173–177, 1990. View at Google Scholar · View at Scopus
  25. G. Friso and L. Wikström, “Analysis of proteins from membrane-enriched cerebellar preparations by two-dimensional gel electrophoresis and mass spectrometry,” Electrophoresis, vol. 20, no. 4-5, pp. 917–927, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Stan, M. Lambert, E. Delvin et al., “Intestinal fatty acid binding protein and microsomal triglyceride transfer protein polymorphisms in French-Canadian youth,” Journal of Lipid Research, vol. 46, no. 2, pp. 320–327, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus