Table of Contents
International Journal of Proteomics
Volume 2012, Article ID 971907, 14 pages
http://dx.doi.org/10.1155/2012/971907
Research Article

Proteolytic Potential of the MSC Exosome Proteome: Implications for an Exosome-Mediated Delivery of Therapeutic Proteasome

1Institute of Medical Biology, A*STAR, 8A Biomedical Grove, No. 06-06 Immunos, Singapore 138648
2School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
3Laboratory of Experimental Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
4The Netherlands Heart Institute, Catharijnesingel 52, 3511 GC Utrecht, The Netherlands
5Cardiovascular Research Institute, and YLL School of Medicine, NUS, Singapore 119074
6Department of Surgery, YLL School of Medicine, NUS, Singapore 119074
7Bioprocessing Technology Institute, A*STAR, Singapore 138671

Received 1 February 2012; Revised 27 March 2012; Accepted 1 June 2012

Academic Editor: John G. Marshall

Copyright © 2012 Ruenn Chai Lai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Kern, H. Eichler, J. Stoeve, H. Klüter, and K. Bieback, “Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue,” Stem Cells, vol. 24, no. 5, pp. 1294–1301, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Banas, T. Teratani, Y. Yamamoto et al., “Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes,” Hepatology, vol. 46, no. 1, pp. 219–228, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. P. S. In 't Anker, W. A. Noort, S. A. Scherjon et al., “Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential,” Haematologica, vol. 88, no. 8, pp. 845–852, 2003. View at Google Scholar · View at Scopus
  4. H. E. Young, T. A. Steele, R. A. Bray et al., “Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors,” Anatomical Record, vol. 264, no. 1, pp. 51–62, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. M. G. Roubelakis, K. I. Pappa, V. Bitsika et al., “Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid: comparison to bone marrow mesenchymal stem cells,” Stem Cells and Development, vol. 16, no. 6, pp. 931–952, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Fukuchi, H. Nakajima, D. Sugiyama, I. Hirose, T. Kitamura, and K. Tsuji, “Human placenta-derived cells have mesenchymal stem/progenitor cell potential,” Stem Cells, vol. 22, no. 5, pp. 649–658, 2004. View at Google Scholar · View at Scopus
  7. Z. Miao, J. Jin, L. Chen et al., “Isolation of mesenchymal stem cells from human placenta: comparison with human bone marrow mesenchymal stem cells,” Cell Biology International, vol. 30, no. 9, pp. 681–687, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Y. Jo, H. J. Lee, S. Y. Kook et al., “Isolation and characterization of postnatal stem cells from human dental tissues,” Tissue Engineering, vol. 13, no. 4, pp. 767–773, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. G. T. J. Huang, S. Gronthos, and S. Shi, “Critical reviews in oral biology & medicine: mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine,” Journal of Dental Research, vol. 88, no. 9, pp. 792–806, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. A. J. Friedenstein, K. V. Petrakova, A. I. Kurolesova, and G. P. Frolova, “Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues,” Transplantation, vol. 6, no. 2, pp. 230–247, 1968. View at Google Scholar · View at Scopus
  11. G. Brooke, M. Cook, C. Blair et al., “Therapeutic applications of mesenchymal stromal cells,” Seminars in Cell & Developmental Biology, vol. 18, no. 6, pp. 846–858, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Giordano, U. Galderisi, and I. R. Marino, “From the laboratory bench to the patient's bedside: an update on clinical trials with mesenchymal stem cells,” Journal of Cellular Physiology, vol. 211, no. 1, pp. 27–35, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. D. G. Phinney and D. J. Prockop, “Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views,” Stem Cells, vol. 25, no. 11, pp. 2896–2902, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Ferrand, D. Noel, P. Lehours et al., “Human bone marrow-derived stem cells acquire epithelial characteristics through fusion with gastrointestinal epithelial cells,” PLoS ONE, vol. 6, no. 5, Article ID e19569, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. J. L. Spees, S. D. Olson, J. Ylostalo et al., “Differentiation, cell fusion, and nuclear fusion during ex vivo repair of epithelium by human adult stem cells from bone marrow stroma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 5, pp. 2397–2402, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Vassilopoulos, P. R. Wang, and D. W. Russell, “Transplanted bone marrow regenerates liver by cell fusion,” Nature, vol. 422, no. 6934, pp. 901–904, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Iso, J. L. Spees, C. Serrano et al., “Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment,” Biochemical and Biophysical Research Communications, vol. 354, no. 3, pp. 700–706, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. L. D. S. Meirelles, A. I. Caplan, and N. B. Nardi, “In search of the in vivo identity of mesenchymal stem cells,” Stem Cells, vol. 26, no. 9, pp. 2287–2299, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. W. Dai, S. L. Hale, B. J. Martin et al., “Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short- and long-term effects,” Circulation, vol. 112, no. 2, pp. 214–223, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. N. Noiseux, M. Gnecchi, M. Lopez-Ilasaca et al., “Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation,” Molecular Therapy, vol. 14, no. 6, pp. 840–850, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Ankrum and J. M. Karp, “Mesenchymal stem cell therapy: two steps forward, one step back,” Trends in Molecular Medicine, vol. 16, no. 5, pp. 203–209, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Timmers, S.-K. Lim, F. Arslan et al., “Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium,” Stem Cell Research, vol. 1, no. 2, pp. 129–137, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. R. C. Lai, F. Arslan, M. M. Lee et al., “Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury,” Stem Cell Research, vol. 4, no. 3, pp. 214–222, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. R. C. Lai, F. Arslan, S. S. Tan et al., “Derivation and characterization of human fetal MSCs: an alternative cell source for large-scale production of cardioprotective microparticles,” Journal of Molecular and Cellular Cardiology, vol. 48, no. 6, pp. 1215–1224, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. T. S. Chen, F. Arslan, Y. Yin et al., “Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESC-derived MSCs,” Journal of Translational Medicine, vol. 9, article 47, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. T. S. Chen, R. C. Lai, M. M. Lee, A. B. Choo, C. N. Lee, and S. K. Lim, “Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs,” Nucleic Acids Research, vol. 38, no. 1, pp. 215–224, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Zoeger, M. Blau, K. Egerer, E. Feist, and B. Dahlmann, “Circulating proteasomes are functional and have a subtype pattern distinct from 20S proteasomes in major blood cells,” Clinical Chemistry, vol. 52, no. 11, pp. 2079–2086, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Jakob, K. Egerer, P. Liebisch et al., “Circulating proteasome levels are an independent prognostic factor for survival in multiple myeloma,” Blood, vol. 109, no. 5, pp. 2100–2105, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. S. U. Sixt and J. Peters, “Extracellular alveolar proteasome: possible role in lung injury and repair,” Proceedings of the American Thoracic Society, vol. 7, no. 1, pp. 91–96, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. S. U. Sixt, M. Adamzik, D. Spyrka et al., “Alveolar extracellular 20s proteasome in patients with acute respiratory distress syndrome,” American Journal of Respiratory and Critical Care Medicine, vol. 179, no. 12, pp. 1098–1106, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. W. Ma, H. Kantarjian, B. Bekele et al., “Proteasome enzymatic activities in plasma as risk stratification of patients with acute myeloid leukemia and advanced-stage myelodysplastic syndrome,” Clinical Cancer Research, vol. 15, no. 11, pp. 3820–3826, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Haass and D. J. Selkoe, “Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid β-peptide,” Nature Reviews Molecular Cell Biology, vol. 8, no. 2, pp. 101–112, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. S. U. Sixt, M. Beiderlinden, H. P. Jennissen, and J. Peters, “Extracellular proteasome in the human alveolar space: a new housekeeping enzyme?” American Journal of Physiology, vol. 292, no. 5, pp. L1280–L1288, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. Q. Lian, E. Lye, K. S. Yeo et al., “Derivation of clinically compliant MSCs from CD105+, CD24- differentiated human ESCs,” Stem Cells, vol. 25, no. 2, pp. 425–436, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. R. C. Lai, F. Arslan, M. M. Lee et al., “Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury,” Stem Cell Research, vol. 4, no. 3, pp. 214–222, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. M. P. Washburn, D. Wolters, and J. R. Yates 3rd, “Large-scale analysis of the yeast proteome by multidimensional protein identification technology,” Nature Biotechnology, vol. 19, no. 3, pp. 242–247, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. S. K. Sze, D. P. de Kleijn, R. C. Lai et al., “Elucidating the secretion proteome of human embryonic stem cell-derived mesenchymal stem cells,” Molecular and Cellular Proteomics, vol. 6, no. 10, pp. 1680–1689, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Thery, M. Ostrowski, and E. Segura, “Membrane vesicles as conveyors of immune responses,” Nature Reviews Immunology, vol. 9, no. 8, pp. 581–593, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. P. D. Thomas, M. J. Campbell, A. Kejariwal et al., “PANTHER: a library of protein families and subfamilies indexed by function,” Genome Research, vol. 13, no. 9, pp. 2129–2141, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. P. D. Thomas, A. Kejariwal, N. Guo et al., “Applications for protein sequence-function evolution data: mRNA/protein expression analysis and coding SNP scoring tools,” Nucleic Acids Research, vol. 34, pp. W645–W650, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. K. Tanaka, “The proteasome: overview of structure and functions,” Proceedings of the Japan Academy B, vol. 85, pp. 12–36, 2009. View at Publisher · View at Google Scholar
  42. G. Raposo, H. W. Nijman, W. Stoorvogel et al., “B lymphocytes secrete antigen-presenting vesicles,” Journal of Experimental Medicine, vol. 183, no. 3, pp. 1161–1172, 1996. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Bogyo, S. Shin, J. S. McMaster, and H. L. Ploegh, “Substrate binding and sequence preference of the proteasome revealed by active-site-directed affinity probes,” Chemistry and Biology, vol. 5, no. 6, pp. 307–320, 1998. View at Google Scholar · View at Scopus
  44. A. Bulteau, K. Lundberg, K. Humphries et al., “Oxidative modification and inactivation of the proteasome during coronary occlusion/reperfusion,” Journal of Biological Chemistry, vol. 276, no. 32, pp. 30057–30063, 2001. View at Publisher · View at Google Scholar · View at Scopus
  45. S. R. Powell, P. Wang, H. Katzeff et al., “Oxidized and ubiquitinated proteins may predict recovery of postischemic cardiac function: essential role of the proteasome,” Antioxidants and Redox Signaling, vol. 7, no. 5-6, pp. 538–546, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. S. R. Powell, K. J. Davies, and A. Divald, “Optimal determination of heart tissue 26S-proteasome activity requires maximal stimulating ATP concentrations,” Journal of Molecular and Cellular Cardiology, vol. 42, no. 1, pp. 265–269, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. N. Gurusamy, S. Goswami, G. Malik, and D. K. Das, “Oxidative injury induces selective rather than global inhibition of proteasomal activity,” Journal of Molecular and Cellular Cardiology, vol. 44, no. 2, pp. 419–428, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. X. Wang, J. Li, H. Zheng, H. Su, and S. R. Powell, “Proteasome functional insufficiency in cardiac pathogenesis-,” American Journal of Physiology, vol. 301, pp. H2207–H2219, 2011. View at Google Scholar
  49. S. R. Powell and A. Divald, “The ubiquitin-proteasome system in myocardial ischaemia and preconditioning,” Cardiovascular Research, vol. 85, no. 2, pp. 303–311, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. F. Arslan, M. B. Smeets, L. A. J. O'Neill et al., “Myocardial ischemia/reperfusion injury is mediated by leukocytic toll-like receptor-2 and reduced by systemic administration of a novel anti-toll-like receptor-2 antibody,” Circulation, vol. 121, no. 1, pp. 80–90, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. L. Timmers, S. K. Lim, F. Arslan et al., “Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium,” Stem Cell Research, vol. 1, no. 2, pp. 129–137, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. T. S. Chen, F. Arslan, Y. Yin et al., “Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESC-derived MSCs,” Journal of Translational Medicine, vol. 9, article 47, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. C. G. Glabe, “Conformation-dependent antibodies target diseases of protein misfolding,” Trends in Biochemical Sciences, vol. 29, no. 10, pp. 542–547, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. R. Kayed, E. Head, J. L. Thompson et al., “Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis,” Science, vol. 300, no. 5618, pp. 486–489, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. A. de Gassart, C. Geminard, B. Fevrier, G. Raposo, and M. Vidal, “Lipid raft-associated protein sorting in exosomes,” Blood, vol. 102, no. 13, pp. 4336–4344, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. D. R. Critchley, C. H. Streuli, S. Kellie, S. Ansell, and B. Patel, “Characterization of the cholera toxin receptor on Balb/c 3T3 cells as a ganglioside similar to, or identical with, ganglioside GM1. No evidence for galactoproteins with receptor activity,” Biochemical Journal, vol. 204, no. 1, pp. 209–219, 1982. View at Google Scholar · View at Scopus
  57. B. D. Spangler, “Structure and function of cholera toxin and the related echerichia coli heat-labile enterotoxin,” Microbiological Reviews, vol. 56, no. 4, pp. 622–647, 1992. View at Google Scholar · View at Scopus
  58. M. Simons and G. Raposo, “Exosomes—vesicular carriers for intercellular communication,” Current Opinion in Cell Biology, vol. 21, no. 4, pp. 575–581, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. R. J. Simpson, J. W. Lim, R. L. Moritz, and S. Mathivanan, “Exosomes: proteomic insights and diagnostic potential,” Expert Review of Proteomics, vol. 6, no. 3, pp. 267–283, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. B. T. Pan and R. M. Johnstone, “Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor,” Cell, vol. 33, no. 3, pp. 967–978, 1983. View at Google Scholar · View at Scopus
  61. H. Valadi, K. Ekstrom, A. Bossios, M. Sjostrand, J. J. Lee, and J. O. Lotvall, “Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells,” Nature Cell Biology, vol. 9, no. 6, pp. 654–659, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. J. S. Schorey and S. Bhatnagar, “Exosome function: from tumor immunology to pathogen biology,” Traffic, vol. 9, no. 6, pp. 871–881, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. V. Huber, P. Filipazzi, M. Iero, S. Fais, and L. Rivoltini, “More insights into the immunosuppressive potential of tumor exosomes,” Journal of Translational Medicine, vol. 6, article 63, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. A. Muntasell, A. C. Berger, and P. A. Roche, “T cell-induced secretion of MHC class II-peptide complexes on B cell exosomes,” EMBO Journal, vol. 26, no. 19, pp. 4263–4272, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. I. S. Zeelenberg, M. Ostrowski, S. Krumeich et al., “Targeting tumor antigens to secreted membrane vesicles in vivo induces efficient antitumor immune responses,” Cancer Research, vol. 68, no. 4, pp. 1228–1235, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. M. Zöller, “Tetraspanins: push and pull in suppressing and promoting metastasis,” Nature Reviews Cancer, vol. 9, no. 1, pp. 40–55, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. S. I. Buschow, B. W. van Balkom, M. Aalberts, A. J. Heck, M. Wauben, and W. Stoorvogel, “MHC class II-associated proteins in B-cell exosomes and potential functional implications for exosome biogenesis,” Immunology and Cell Biology, vol. 88, no. 8, pp. 851–856, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. P. A. Gonzales, T. Pisitkun, J. D. Hoffert et al., “Large-scale proteomics and phosphoproteomics of urinary exosomes,” Journal of the American Society of Nephrology, vol. 20, no. 2, pp. 363–379, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. K. Carayon, K. Chaoui, E. Ronzier et al., “Proteolipidic composition of exosomes changes during reticulocyte maturation,” The Journal of Biological Chemistry, vol. 286, pp. 34426–34439, 2011. View at Publisher · View at Google Scholar
  70. T. Jung and T. Grune, “The proteasome and its role in the degradation of oxidized proteins,” IUBMB Life, vol. 60, no. 11, pp. 743–752, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. E. R. Stadtman and R. L. Levine, “Protein oxidation,” Annals of the New York Academy of Sciences, vol. 899, pp. 191–208, 2000. View at Google Scholar · View at Scopus
  72. R. A. Dunlop, U. T. Brunk, and K. J. Rodgers, “Oxidized proteins: mechanisms of removal and consequences of accumulation,” IUBMB Life, vol. 61, no. 5, pp. 522–527, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. W. Sohns, T. A. van Veen, and M. A. van der Heyden, “Regulatory roles of the ubiquitin-proteasome system in cardiomyocyte apoptosis,” Current Molecular Medicine, vol. 10, no. 1, pp. 1–13, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. M. S. Willis, W. H. Townley-Tilson, E. Y. Kang, J. W. Homeister, and C. Patterson, “Sent to destroy: the ubiquitin proteasome system regulates cell signaling and protein quality control in cardiovascular development and disease,” Circulation Research, vol. 106, no. 3, pp. 463–478, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. O. Tsukamoto, T. Minamino, and M. Kitakaze, “Functional alterations of cardiac proteasomes under physiological and pathological conditions,” Cardiovascular Research, vol. 85, no. 2, pp. 339–346, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. L. Alvarez-Erviti, Y. Seow, H. Yin, C. Betts, S. Lakhal, and M. J. Wood, “Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes,” Nature Biotechnology, vol. 29, no. 4, pp. 341–345, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. H. Rabesandratana, J. P. Toutant, H. Reggio, and M. Vidal, “Decay-accelerating factor (CD55) and membrane inhibitor of reactive lysis (CD59) are released within exosomes during in vitro maturation of reticulocytes,” Blood, vol. 91, no. 7, pp. 2573–2580, 1998. View at Google Scholar · View at Scopus