Table of Contents
International Journal of Proteomics
Volume 2012, Article ID 980829, 9 pages
http://dx.doi.org/10.1155/2012/980829
Research Article

Reconstruction of Sugar Metabolic Pathways of Giardia lamblia

1Institute of Molecular BioSciences, Massey University, Palmerston North 4442, New Zealand
2Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand

Received 2 August 2012; Revised 18 September 2012; Accepted 23 September 2012

Academic Editor: Vladimir Uversky

Copyright © 2012 Jian Han and Lesley J. Collins. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. B. Huang and A. C. White, “An updated review on Cryptosporidium and Giardia,” Gastroenterology Clinics of North America, vol. 35, no. 2, pp. 291–314, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. L. A. Dunn, A. G. Burgess, K. G. Krauer et al., “A new-generation 5-nitroimidazole can induce highly metronidazole-resistant Giardia lamblia in vitro,” International Journal of Antimicrobial Agents, vol. 36, no. 1, pp. 37–42, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Harris, S. Plummer, and D. Lloyd, “Antigiardial drugs,” Applied Microbiology and Biotechnology, vol. 57, no. 5-6, pp. 614–619, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. C. A. Valdez, J. C. Tripp, Y. Miyamoto et al., “Synthesis and electrochemistry of 2-ethenyl and 2-ethanyl derivatives of 5-nitroimidazole and antimicrobial activity against Giardia lamblia,” Journal of Medicinal Chemistry, vol. 52, no. 13, pp. 4038–4053, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Upcroft and J. A. Upcroft, “Drug targets and mechanisms of resistance in the anaerobic protozoa,” Clinical Microbiology Reviews, vol. 14, no. 1, pp. 150–164, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. R. D. Adam, “Biology of Giardia lamblia,” Clinical Microbiology Reviews, vol. 14, no. 3, pp. 447–475, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. V. S. Rao and K. Srinivas, “Modern drug discovery process: an in silico approach,” Journal of Bioinformatics and Sequence Analysis, vol. 2, pp. 89–94, 2011. View at Google Scholar
  8. X. S. Chen, W. T. J. White, L. J. Collins, and D. Penny, “Computational identification of four spliceosomal snRNAs from the deep-branching eukaryote Giardia intestinalis,” PLoS ONE, vol. 3, no. 8, Article ID e3106, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. X. W. Chen, L. J. Collins, P. J. Biggs, and D. Penny, “High throughput genome-wide survey of small RNAs from the parasitic protists Giardia intestinalis and Trichomonas vaginalis,” Genome Biology and Evolution, vol. 1, pp. 165–175, 2009. View at Google Scholar
  10. H. G. Morrison, A. G. McArthur, F. D. Gillin et al., “Genomic minimalism in the early diverging intestinal parasite Giardia lamblia,” Science, vol. 317, no. 5846, pp. 1921–1926, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Kanehisa, S. Goto, M. Hattori et al., “From genomics to chemical genomics: new developments in KEGG,” Nucleic Acids Research, vol. 34, pp. D354–D357, 2006. View at Google Scholar · View at Scopus
  12. KEGG KEGG encyclopedia, http://www.genome.jp/kegg/kegg2.html.
  13. P. Dolezal, O. Smid, P. Rada et al., “Giardia mitosomes and trichomonad hydrogenosomes share a common mode of protein targeting,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 31, pp. 10924–10929, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. P. L. Jedelský, P. Doležal, P. Rada et al., “The minimal proteome in the reduced mitochondrion of the parasitic protist Giardia intestinalis,” PLoS ONE, vol. 6, no. 2, Article ID e17285, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. V. V. Emelyanov and A. V. Goldberg, “Fermentation enzymes of Giardia intestinalis, pyruvate: ferredoxin oxidoreductase and hydrogenase, do not localize to its mitosomes,” Microbiology, vol. 157, no. 6, pp. 1602–1611, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local alignment search tool,” Journal of Molecular Biology, vol. 215, no. 3, pp. 403–410, 1990. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Mitra, J. Cui, P. W. Robbins, and J. Samuelson, “A deeply divergent phosphoglucomutase (PGM) of Giardia lamblia has both PGM and phosphomannomutase activities,” Glycobiology, vol. 20, no. 10, pp. 1233–1240, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. (NCBI) NCfBI, 2012, http://www.ncbi.nlm.nih.gov/guide/.
  19. M. Dan and C. C. Wang, “Role of alcohol dehydrogenase E (ADHE) in the energy metabolism of Giardia lamblia,” Molecular and Biochemical Parasitology, vol. 109, no. 1, pp. 25–36, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. L. B. Sánchez, “Aldehyde dehydrogenase (CoA-acetylating) and the mechanism of ethanol formation in the amitochondriate protist, Giardia lamblia,” Archives of Biochemistry and Biophysics, vol. 354, no. 1, pp. 57–64, 1998. View at Publisher · View at Google Scholar · View at Scopus
  21. T. A. Paget, M. L. Kelly, E. L. Jarroll, D. G. Lindmark, and D. Lloyd, “The effects of oxygen on fermentation in Giardia lamblia,” Molecular and Biochemical Parasitology, vol. 57, no. 1, pp. 65–71, 1993. View at Publisher · View at Google Scholar · View at Scopus
  22. R. B. Ladeira, M. A. R. Freitas, E. F. Silva, N. F. Gontijo, and M. A. Gomes, “Glycogen as a carbohydrate energy reserve in trophozoites of Giardia lamblia,” Parasitology Research, vol. 96, no. 6, pp. 418–421, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Hilario and J. P. Gogarten, “The prokaryote-to-eukaryote transition reflected in the evolution of the V/F/A-ATPase catalytic and proteolipid subunits,” Journal of Molecular Evolution, vol. 46, no. 6, pp. 703–715, 1998. View at Publisher · View at Google Scholar · View at Scopus
  24. G. Unden and J. Bongaerts, “Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors,” Biochimica et Biophysica Acta, vol. 1320, no. 3, pp. 217–234, 1997. View at Publisher · View at Google Scholar · View at Scopus
  25. K. L. Adams and J. D. Palmer, “Evolution of mitochondrial gene content: gene loss and transfer to the nucleus,” Molecular Phylogenetics and Evolution, vol. 29, no. 3, pp. 380–395, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. J. O. Andersson, Å. M. Sjögren, L. A. M. Davis, T. M. Embley, and A. J. Roger, “Phylogenetic analyses of diplomonad genes reveal frequent lateral gene transfers affecting eukaryotes,” Current Biology, vol. 13, no. 2, pp. 94–104, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. A. H. Romano and T. Conway, “Evolution of carbohydrate metabolic pathways,” Research in Microbiology, vol. 147, no. 6-7, pp. 448–455, 1996. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Hartman and A. Fedorov, “The origin of the eukaryotic cell: a genomic investigation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 3, pp. 1420–1425, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. C. G. Kurland, L. J. Collins, and D. Penny, “Genomics and the irreducible nature of eukaryote cells,” Science, vol. 312, no. 5776, pp. 1011–1014, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. F. M. Matschinsky, “Assessing the potential of glucokinase activators in diabetes therapy,” Nature Reviews Drug Discovery, vol. 8, no. 5, pp. 399–416, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. C. L. Byington, R. L. Dunbrack, F. G. Whitby, F. E. Cohen, and N. Agabian, “Entamoeba histolytica: computer-assisted modeling of phosphofructokinase for the prediction of broad-spectrum antiparasitic agents,” Experimental Parasitology, vol. 87, no. 3, pp. 194–202, 1997. View at Publisher · View at Google Scholar · View at Scopus