Table of Contents
International Journal of Proteomics
Volume 2013 (2013), Article ID 279590, 10 pages
http://dx.doi.org/10.1155/2013/279590
Research Article

Top-Down Characterization of the Post-Translationally Modified Intact Periplasmic Proteome from the Bacterium Novosphingobium aromaticivorans

1Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, P.O. Box 999/MS K8-98, Richland, WA 99352, USA
2Center for Bioproducts and Bioenergy, Washington State University, Richland, WA, USA
3Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
4Computational Sciences and Mathematics Division, Pacific Northwest National Laboratory, Richland, WA, USA
5Department of Neurobiology, 720 Westview Drive SW, Atlanta, GA, USA

Received 7 October 2012; Revised 31 January 2013; Accepted 4 February 2013

Academic Editor: Boris Zybailov

Copyright © 2013 Si Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. W. Costerton, J. M. Ingram, and K. J. Cheng, “Structure and function of the cell envelope of gram negative bacteria,” Bacteriological Reviews, vol. 38, no. 1, pp. 87–110, 1974. View at Google Scholar · View at Scopus
  2. J. A. Hobot, E. Carlemalm, W. Villiger, and E. Kellenberger, “Periplasmic gel: new concept resulting from the reinvestigation of bacterial cell envelope ultrastructure by new methods,” Journal of Bacteriology, vol. 160, no. 1, pp. 143–152, 1984. View at Google Scholar · View at Scopus
  3. M. Ehrmann, The Periplasm, ASM press, Washington, DC, USA, 2006.
  4. M. Merdanovic, T. Clausen, M. Kaiser, R. Huber, and M. Ehrmann, “Protein quality control in the bacterial periplasm,” Annual Review of Microbiology, vol. 65, pp. 149–168, 2011. View at Google Scholar
  5. J. W. Izard and D. A. Kendall, “Signal peptides: exquisitely designed transport promoters,” Molecular Microbiology, vol. 13, no. 5, pp. 765–773, 1994. View at Google Scholar · View at Scopus
  6. R. E. Dalbey, M. O. Lively, S. Bron, and J. M. van Dijl, “The chemistry and enzymology of the type I signal peptidases,” Protein Science, vol. 6, no. 6, pp. 1129–1138, 1997. View at Google Scholar · View at Scopus
  7. D. Missiakas and S. Raina, “Protein folding in the bacterial periplasm,” Journal of Bacteriology, vol. 179, no. 8, pp. 2465–2471, 1997. View at Google Scholar · View at Scopus
  8. L. M. Stancik, D. M. Stancik, B. Schmidt, D. M. Barnhart, Y. N. Yoncheva, and J. L. Slonczewski, “pH-dependent expression of periplasmic proteins and amino acid catabolism in Escherichia coli,” Journal of Bacteriology, vol. 184, no. 15, pp. 4246–4258, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Kadokura, F. Katzen, and J. Beckwith, “Protein disulfide bond formation in prokaryotes,” Annual Review of Biochemistry, vol. 72, pp. 111–135, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Kadokura and J. Beckwith, “Mechanisms of oxidative protein folding in the bacterial cell envelope,” Antioxidants and Redox Signaling, vol. 13, no. 8, pp. 1231–1246, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Y. Londer, S. E. Giuliani, T. Peppler, and F. R. Collart, “Addressing Shewanella oneidensis “cytochromome”: the first step towards high-throughput expression of cytochromes c,” Protein Expression and Purification, vol. 62, no. 1, pp. 128–137, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. M. M. Savitski, M. L. Nielsen, and R. A. Zubarev, “ModifiComb, a new proteomic tool for mapping substoichiometric post-translational modifications, finding novel types of modifications, and fingerprinting complex protein mixtures,” Molecular and Cellular Proteomics, vol. 5, no. 5, pp. 935–948, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Tanner, S. H. Payne, S. Dasari et al., “Accurate annotation of peptide modifications through unrestrictive database search,” Journal of Proteome Research, vol. 7, no. 1, pp. 170–181, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Chi, L. Valenzuela, S. Beard et al., “Periplasmic proteins of the extremophile acidithiobacillus ferrooxidans: a high throughput proteomics analysis,” Molecular and Cellular Proteomics, vol. 6, no. 12, pp. 2239–2251, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. X. Liu, Y. Sirotkin, Y. Shen et al., “Protein identification using top-down,” Molecular and Cellular Proteomics, vol. 11, no. 6, Article ID M111.008524, 2012. View at Google Scholar
  16. C. M. Ryan, P. Souda, F. Halgand et al., “Confident assignment of intact mass tags to human salivary cystatins using top-down fourier-transform ion cyclotron resonance mass spectrometry,” Journal of the American Society for Mass Spectrometry, vol. 21, no. 6, pp. 908–917, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. O. Pinyakong, H. Habe, and T. Omori, “The unique aromatic catabolic genes in sphingomonads degrading polycyclic aromatic hydrocarbons (PAHs),” Journal of General and Applied Microbiology, vol. 49, no. 1, pp. 1–19, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. R. N. Brown, M. F. Romine, A. A. Schepmoes, R. D. Smith, and M. S. Lipton, “Mapping the subcellular proteome of Shewanella oneidensis MR-1 using Sarkosyl-based fractionation and LC-MS/MS protein identification,” Journal of Proteome Research, vol. 9, no. 9, pp. 4454–4463, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. R. T. Kelly, J. S. Page, Q. Luo et al., “Chemically etched open tubular and monolithic emitters for nanoelectrospray ionization mass spectrometry,” Analytical Chemistry, vol. 78, no. 22, pp. 7796–7801, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. E. A. Livesay, K. Tang, B. K. Taylor et al., “Fully automated four-column capillary LC-MS system for maximizing throughput in proteomic analyses,” Analytical Chemistry, vol. 80, no. 1, pp. 294–302, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Kim, N. Gupta, and P. A. Pevzner, “Spectral probabilities and generating functions of tandem mass spectra: a strike against decoy databases,” Journal of Proteome Research, vol. 7, no. 8, pp. 3354–3363, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. E. Venter, R. D. Smith, and S. H. Payne, “Proteogenomic analysis of bacteria and archaea: a 46 organism case study,” PLoS One, vol. 6, no. 11, article e27587, 2011. View at Google Scholar
  23. D. Perlman and H. O. Halvorson, “A putative signal peptidase recognition site and sequence in eukaryotic and prokaryotic signal peptides,” Journal of Molecular Biology, vol. 167, no. 2, pp. 391–409, 1983. View at Google Scholar · View at Scopus
  24. Y. S. Tsai, A. Scherl, J. L. Shaw et al., “Precursor ion independent algorithm for top-down shotgun proteomics,” Journal of the American Society for Mass Spectrometry, vol. 20, no. 11, pp. 2154–2166, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. S. M. Patrie, J. T. Ferguson, D. E. Robinson et al., “Top down mass spectrometry of <60-kDa proteins from Methanosarcina acetivorans using quadrupole FTMS with automated octopole collisionally activated dissociation,” Molecular and Cellular Proteomics, vol. 5, no. 1, pp. 14–25, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. E. J. Danoff and K. G. Fleming, “The soluble, periplasmic domain of OmpA folds as an independent unit and displays chaperone activity by reducing the self-association propensity of the unfolded OmpA transmembrane beta-barrel,” Biophysical Chemistry, vol. 159, no. 1, pp. 194–204, 2011. View at Google Scholar
  27. C. Flinta, B. Persson, H. Jornvall, and G. von Heijne, “Sequence determinants of cytosolic N-terminal protein processing,” European Journal of Biochemistry, vol. 154, no. 1, pp. 193–196, 1986. View at Google Scholar · View at Scopus
  28. N. Gupta, J. Benhamida, V. Bhargava et al., “Comparative proteogenomics: combining mass spectrometry and comparative genomics to analyze multiple genomes,” Genome Research, vol. 18, no. 7, pp. 1133–1142, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. F. Frottin, A. Martinez, P. Peynot et al., “The proteomics of N-terminal methionine cleavage,” Molecular and Cellular Proteomics, vol. 5, no. 12, pp. 2336–2349, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. D. Malasarn, J. R. Keeffe, and D. K. Newman, “Characterization of the arsenate respiratory reductase from Shewanella sp. strain ANA-3,” Journal of Bacteriology, vol. 190, no. 1, pp. 135–142, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. F. Biaso, B. Burlat, and B. Guigliarelli, “DFT investigation of the molybdenum cofactor in periplasmic nitrate reductases: structure of the Mo(V) EPR-active species,” Inorganic Chemistry, vol. 51, no. 6, pp. 3409–3419, 2012. View at Google Scholar
  32. S. Najmudin, P. J. González, J. Trincão et al., “Periplasmic nitrate reductase revisited: a sulfur atom completes the sixth coordination of the catalytic molybdenum,” Journal of Biological Inorganic Chemistry, vol. 13, no. 5, pp. 737–753, 2008. View at Publisher · View at Google Scholar · View at Scopus