Table of Contents
International Journal of Proteomics
Volume 2013 (2013), Article ID 293782, 10 pages
http://dx.doi.org/10.1155/2013/293782
Research Article

Proteomic Analysis and Label-Free Quantification of the Large Clostridium difficile Toxins

1Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention (CDC), MS F-50, 4770 Buford Hwy NE, Atlanta, GA 30341, USA
2Association of Public Health Laboratories, Silver Spring, MD 20910, and Oak Ridge Institute for Scientific Education, Oak Ridge, TN 37380, USA
3Universidade do Oeste de Santa Catarina, 89600 Joacaba, SC, Brazil

Received 12 April 2013; Revised 23 June 2013; Accepted 24 June 2013

Academic Editor: Jen-Fu Chiu

Copyright © 2013 Hercules Moura et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. P. Carter, J. I. Rood, and D. Lyras, “The role of toxin A and toxin B in Clostridium difficile-associated disease: past and present perspectives,” Gut Microbes, vol. 1, no. 1, pp. 58–64, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Rupnik, M. H. Wilcox, and D. N. Gerding, “Clostridium difficile infection: new developments in epidemiology and pathogenesis,” Nature Reviews Microbiology, vol. 7, no. 7, pp. 526–536, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. C. V. Gould and L. C. McDonald, “Bench-to-bedside review: Clostridium difficile colitis,” Critical Care, vol. 12, no. 1, p. 203, 2008. View at Google Scholar · View at Scopus
  4. M. Merrigan, A. Venugopal, M. Mallozzi et al., “Human hypervirulent Clostridium difficile strains exhibit increased sporulation as well as robust toxin production,” Journal of Bacteriology, vol. 192, no. 19, pp. 4904–4911, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Warny, J. Pepin, A. Fang et al., “Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe,” Lancet, vol. 366, no. 9491, pp. 1079–1084, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Karlsson, L. G. Burman, and T. Åkerlund, “Induction of toxins in Clostridium difficile is associated with dramatic changes of its metabolism,” Microbiology, vol. 154, no. 11, pp. 3430–3436, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Mukherjee, S. Karlsson, L. G. Burman, and T. Åkerlund, “Proteins released during high toxin production in Clostridium difficile,” Microbiology, vol. 148, no. 7, pp. 2245–2253, 2002. View at Google Scholar · View at Scopus
  8. P. Vohra and I. R. Poxton, “Comparison of toxin and spore production in clinically relevant strains of Clostridium difficile,” Microbiology, vol. 157, no. 5, pp. 1343–1353, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Wright, D. Drudy, L. Kyne, K. Brown, and N. F. Fairweather, “Immunoreactive cell wall proteins of Clostridium difficile identified by human sera,” Journal of Medical Microbiology, vol. 57, no. 6, pp. 750–756, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Wright, R. Wait, S. Begum et al., “Proteomic analysis of cell surface proteins from Clostridium difficile,” Proteomics, vol. 5, no. 9, pp. 2443–2452, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. T. D. Lawley, N. J. Croucher, L. Yu et al., “Proteomic and genomic characterization of highly infectious Clostridium difficile 630 spores,” Journal of Bacteriology, vol. 191, no. 17, pp. 5377–5386, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Jain, C. Graham, R. L. J. Graham, G. McMullan, and N. G. Ternan, “Quantitative proteomic analysis of the heat stress response in Clostridium difficile strain 630,” Journal of Proteome Research, vol. 10, no. 9, pp. 3880–3890, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Boetzkes, K. W. Felkel, J. Zeiser, N. Jochim, I. Just, and A. Pich, “Secretome analysis of Clostridium difficile strains,” Archives of Microbiology, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. J. R. Barr, V. L. Maggio, D. G. Patterson Jr. et al., “Isotope dilution—mass spectrometric quantification of specific proteins: model application with apolipoprotein A-I,” Clinical Chemistry, vol. 42, no. 10, pp. 1676–1682, 1996. View at Google Scholar · View at Scopus
  15. B. Domon and R. Aebersold, “Options and considerations when selecting a quantitative proteomics strategy,” Nature Biotechnology, vol. 28, no. 7, pp. 710–721, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Pan, R. Aebersold, R. Chen et al., “Mass spectrometry based targeted protein quantification: methods and applications,” Journal of Proteome Research, vol. 8, no. 2, pp. 787–797, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. W. Zhu, J. W. Smith, and C. M. Huang, “Mass spectrometry-based label-free quantitative proteomics,” Journal of Biomedicine and Biotechnology, vol. 2010, Article ID 840518, 6 pages, 2010. View at Publisher · View at Google Scholar
  18. S. J. Geromanos, J. P. C. Vissers, J. C. Silva et al., “The detection, correlation, and comparison of peptide precursor and product ions from data independent LC-MS with data dependant LC-MS/MS,” Proteomics, vol. 9, no. 6, pp. 1683–1695, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. J. C. Silva, R. Denny, C. Dorschel et al., “Simultaneous qualitative and quantitative analysis of the Escherichia coli proteome: a sweet tale,” Molecular and Cellular Proteomics, vol. 5, no. 4, pp. 589–607, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. A. E. Boyer, M. Gallegos-Candela, R. C. Lins et al., “Quantitative mass spectrometry for bacterial protein toxins—a sensitive, specific, high-throughput tool for detection and diagnosis,” Molecules, vol. 16, no. 3, pp. 2391–2413, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Moura, R. R. Terilli, A. R. Woolfitt et al., “Studies on botulinum neurotoxins type/C1 and mosaic/DC using Endopep-MS and proteomics,” FEMS Immunology and Medical Microbiology, vol. 61, no. 3, pp. 288–300, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. R. R. Terilli, H. Moura, A. R. Woolfitt, J. Rees, D. M. Schieltz, and J. R. Barr, “A historical and proteomic analysis of botulinum neurotoxin type/G,” BMC Microbiology, vol. 11, article 232, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. R. West, J. Whitmon, Y. M. Williamson et al., “A rapid method for capture and identification of immunogenic proteins in Bordetella pertussis enriched membranes fractions: a fast-track strategy applicable to other microorganisms,” Journal of Proteomics, vol. 75, no. 6, pp. 1966–1972, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. N. Y. Yu, J. R. Wagner, M. R. Laird et al., “PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes,” Bioinformatics, vol. 26, no. 13, pp. 1608–1615, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. R. G. Biringer, H. Amato, M. G. Harrington, A. N. Fonteh, J. N. Riggins, and A. F. R. Hühmer, “Enhanced sequence coverage of proteins in human cerebrospinal fluid using multiple enzymatic digestion and linear ion trap LC-MS/MS,” Briefings in Functional Genomics and Proteomics, vol. 5, no. 2, pp. 144–153, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. F. Fischer and A. Poetsch, “Protein cleavage strategies for an improved analysis of the membrane proteome,” Proteome Science, vol. 4, article 2, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. D. L. Swaney, C. D. Wenger, and J. J. Coon, “Value of using multiple proteases for large-scale mass spectrometry-based proteomics,” Journal of Proteome Research, vol. 9, no. 3, pp. 1323–1329, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. J. E. Blake, F. Mitsikosta, and M. A. Metcalfe, “Immunological detection and cytotoxic properties of toxins from toxin A-positive, toxin B-positive Clostridium difficile variants,” Journal of Medical Microbiology, vol. 53, no. 3, pp. 197–205, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. G. Yang, B. Zhou, J. Wang et al., “Expression of recombinant Clostridium difficile toxin A and B in Bacillus megaterium,” BMC Microbiology, vol. 8, article 192, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Åkerlund, B. Svenungsson, Å. Lagergren, and L. G. Burman, “Correlation of disease severity with fecal toxin levels in patients with Clostridium difficile-associated diarrhea and distribution of PCR ribotypes and toxin yields in vitro of corresponding isolates,” Journal of Clinical Microbiology, vol. 44, no. 2, pp. 353–358, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Levin, E. Hradetzky, and S. Bahn, “Quantification of proteins using data-independent analysis (MSE) in simple and complex samples: a systematic evaluation,” Proteomics, vol. 11, no. 16, pp. 3273–3287, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. R. A. Stabler, M. He, L. Dawson et al., “Comparative genome and phenotypic analysis of Clostridium difficile 027 strains provides insight into the evolution of a hypervirulent bacterium,” Genome Biology, vol. 10, no. 9, article R102, 2009. View at Publisher · View at Google Scholar · View at Scopus