Table of Contents
International Journal of Proteomics
Volume 2013, Article ID 654356, 8 pages
http://dx.doi.org/10.1155/2013/654356
Research Article

Additions to the Human Plasma Proteome via a Tandem MARS Depletion iTRAQ-Based Workflow

1Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
2The Clinical Research, Investigation, and Systems Modeling of Acute Illness (CRISMA) Laboratory Center and Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA

Received 5 October 2012; Accepted 10 January 2013

Academic Editor: Visith Thongboonkerd

Copyright © 2013 Zhiyun Cao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. L. Anderson and N. G. Anderson, “The human plasma proteome: history, character, and diagnostic prospects,” Molecular & Cellular Proteomics, vol. 1, no. 11, pp. 845–867, 2002. View at Google Scholar · View at Scopus
  2. Y. Gong, X. Li, B. Yang et al., “Different immunoaffinity fractionation strategies to characterize the human plasma proteome,” Journal of Proteome Research, vol. 5, no. 6, pp. 1379–1387, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. H. J. Issaq, Z. Xiao, and T. D. Veenstra, “Serum and plasma proteomics,” Chemical Reviews, vol. 107, no. 8, pp. 3601–3620, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. J. M. Jacobs, J. N. Adkins, W. J. Qian et al., “Utilizing human blood plasma for proteomic biomarker discovery,” Journal of Proteome Research, vol. 4, no. 4, pp. 1073–1085, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Tu, P. A. Rudnick, M. Y. Martinez et al., “Depletion of abundant plasma proteins and limitations of plasma proteomics,” Journal of Proteome Research, vol. 9, no. 10, pp. 4982–4991, 2010. View at Publisher · View at Google Scholar
  6. P. Juhasz, M. Lynch, M. Sethuraman et al., “Semi-targeted plasma proteomics discovery workflow utilizing two-stage protein depletion and off-line LC-MALDI MS/MS,” Journal of Proteome Research, vol. 10, no. 1, pp. 34–45, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Mortezai, S. N. Harder, C. Schnabel et al., “Tandem affinity depletion: a combination of affinity fractionation and immunoaffinity depletion allows the detection of low-abundance components in the complex proteomes of body fluids,” Journal of Proteome Research, vol. 9, no. 12, pp. 6126–6134, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. W.-J. Qian, D. T. Kaleta, B. A. Ogata et al., “Enhanced detection of low abundant human plasma proteins using a tandem IgY12-SuperMix immunoaffinity separation strategy,” Molecular & Cellular Proteomics, vol. 7, no. 10, pp. 1963–1973, 2008. View at Publisher · View at Google Scholar
  9. C. M. Shuford, A. M. Hawkridge, J. C. Burnett, and D. C. Muddiman, “Utilizing spectral counting to quantitatively characterize tandem removal of abundant proteins (TRAP) in human plasma,” Analytical Chemistry, vol. 82, no. 24, pp. 10179–10185, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Farrah, E. W. Deutsch, G. S. Omenn et al., “A high-confidence human plasma proteome reference set with estimated concentrations in PeptideAtlas,” Molecular & Cellular Proteomics, vol. 10, Article ID M110.006353, 2011. View at Publisher · View at Google Scholar
  11. C. D. Aluise, R. A. Sowell, and D. A. Butterfield, “Peptides and proteins in plasma and cerebrospinal fluid as biomarkers for the prediction, diagnosis, and monitoring of therapeutic efficacy of Alzheimer's disease,” Biochimica et Biophysica Acta, vol. 1782, no. 10, pp. 549–558, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Boja, T. Hiltke, R. Rivers et al., “Evolution of clinical proteomics and its role in medicine,” Journal of Proteome Research, vol. 10, no. 1, pp. 66–84, 2011. View at Google Scholar
  13. D. Han, S. Moon, H. Kim et al., “Detection of differential proteomes associated with the development of type 2 diabetes in the Zucker rat model using the iTRAQ technique,” Journal of Proteome Research, vol. 10, no. 2, pp. 564–577, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Latterich, M. Abramovitz, and B. Leyland-Jones, “Proteomics: new technologies and clinical applications,” European Journal of Cancer, vol. 44, no. 18, pp. 2737–2741, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. N. A. Karp, W. Huber, P. G. Sadowski, P. D. Charles, S. V. Hester, and K. S. Lilley, “Addressing accuracy and precision issues in iTRAQ quantitation,” Molecular and Cellular Proteomics, vol. 9, no. 9, pp. 1885–1897, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. S. G. Chee, K. C. Poh, K. P. Trong, and P. C. Wright, “Technical, experimental, and biological variations in isobaric tags for relative and absolute quantitation (iTRAQ),” Journal of Proteome Research, vol. 6, no. 2, pp. 821–827, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. E. G. Hill, J. H. Schwacke, S. Comte-Walters et al., “A statistical model for iTRAQ data analysis,” Journal of Proteome Research, vol. 7, no. 8, pp. 3091–3101.
  18. A. L. Oberg, D. W. Mahoney, J. E. Eckel-Passow et al., “Statistical analysis of relative labeled mass spectrometry data from complex samples using ANOVA,” Journal of Proteome Research, vol. 7, no. 1, pp. 225–233, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. X. Song, J. Bandow, J. Sherman et al., “iTRAQ experimental design for plasma biomarker discovery,” Journal of Proteome Research, vol. 7, no. 7, pp. 2952–2958, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. P. K. Chong, C. S. Gan, T. K. Pham, and P. C. Wright, “Isobaric tags for relative and absolute quantitation (iTRAQ) reproducibility: implication of multiple injections,” Journal of Proteome Research, vol. 5, no. 5, pp. 1232–1240, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Zhou, K. L. Simpson, L. J. Lancashire et al., “Statistical considerations of optimal study design for human plasma proteomics and biomarker discovery,” Journal of Proteome Research, vol. 11, no. 4, pp. 2103–2113, 2012. View at Google Scholar
  22. D. W. Mahoney, T. M. Therneau, C. J. Heppelmann et al., “Relative quantification: characterization of bias, variability and fold changes in mass spectrometry data from iTRAQ-labeled peptides,” Journal of Proteome Research, vol. 10, no. 9, pp. 4325–4333, 2011. View at Google Scholar
  23. J. A. Kellum, L. Kong, M. P. Fink et al., “Understanding the inflammatory cytokine response in pneumonia and sepsis: results of the genetic and inflammatory markers of sepsis (GenIMS) study,” Archives of Internal Medicine, vol. 167, no. 15, pp. 1655–1663, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Köcher, P. Pichler, M. Schutzbier et al., “High precision quantitative proteomics using iTRAQ on an LTQ Orbitrap: a new mass spectrometric method combining the benefits of all,” Journal of Proteome Research, vol. 8, no. 10, pp. 4743–4752, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. G. W. Horgan, “Sample size and replication in 2D gel electrophoresis studies,” Journal of Proteome Research, vol. 6, no. 7, pp. 2884–2887, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. E. Ernoult, A. Bourreau, E. Gamelin, and C. Guette, “A proteomic approach for plasma biomarker discovery with iTRAQ labelling and OFFGEL fractionation,” Journal of Biomedicine & Biotechnology, vol. 2010, p. 927917, 2010. View at Google Scholar · View at Scopus
  27. H. Ye, L. Sun, X. Huang, P. Zhang, and X. Zhao, “A proteomic approach for plasma biomarker discovery with 8-plex iTRAQ labeling and SCX-LC-MS/MS,” Molecular and Cellular Biochemistry, vol. 343, no. 1-2, pp. 91–99, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. D. A. ) Cairns, “Statistical issues in quality control of proteomic analyses: good experimental design and planning,” Proteomics, vol. 11, no. 6, pp. 1037–1048. View at Publisher · View at Google Scholar
  29. N. A. Karp and K. S. Lilley, “Design and analysis issues in quantitative proteomics studies,” Proteomics, vol. 7, pp. 42–50, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Levin, “The role of statistical power analysis in quantitative proteomics,” Proteomics, vol. 11, no. 12, pp. 2565–2567, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. A. L. Oberg and O. Vitek, “Statistical design of quantitative mass spectrometry-based proteomic experiments,” Journal of Proteome Research, vol. 8, no. 5, pp. 2144–2156, 2009. View at Publisher · View at Google Scholar · View at Scopus