Table of Contents
International Journal of Proteomics
Volume 2013 (2013), Article ID 756039, 13 pages
http://dx.doi.org/10.1155/2013/756039
Review Article

Issues and Applications in Label-Free Quantitative Mass Spectrometry

1Department of Cellular & Integrative Physiology, Biotechnology Research & Training Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
2School of Informatics and Computing, Indiana University, Bloomington, IN 47408, USA

Received 2 October 2012; Revised 17 October 2012; Accepted 31 October 2012

Academic Editor: Bomie Han

Copyright © 2013 Xianyin Lai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. A. Liotta, V. Espina, A. I. Mehta et al., “Protein microarrays: meeting analytical challenges for clinical applications,” Cancer Cell, vol. 3, no. 4, pp. 317–325, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Rabilloud and C. Lelong, “Two-dimensional gel electrophoresis in proteomics: a tutorial,” Journal of Proteomics, vol. 74, no. 10, pp. 1829–1841, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. F. Xie, T. Liu, W. J. Qian, V. A. Petyuk, and R. D. Smith, “Liquid chromatography-mass spectrometry-based quantitative proteomics,” Journal of Biological Chemistry, vol. 286, no. 29, pp. 25443–25449, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. M. W. Linscheid, R. Ahrends, S. Pieper, and A. Kühn, “Liquid chromatography-mass spectrometry-based quantitative proteomics,” Methods in Molecular Biology, vol. 564, pp. 189–205, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Ji, A. Chakraborty, M. Geng et al., “Strategy for qualitative and quantitative analysis in proteomics based on signature peptides,” Journal of Chromatography B, vol. 745, no. 1, pp. 197–210, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. S. P. Gygi, B. Rist, S. A. Gerber, F. Turecek, M. H. Gelb, and R. Aebersold, “Quantitative analysis of complex protein mixtures using isotope-coded affinity tags,” Nature Biotechnology, vol. 17, no. 10, pp. 994–999, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. X. Yao, A. Freas, J. Ramirez, P. A. Demirev, and C. Fenselau, “Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus,” Analytical Chemistry, vol. 73, no. 13, pp. 2836–2842, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. T. D. Veenstra, S. Martinović, G. A. Anderson, L. Paša-Tolić, and R. D. Smith, “Proteome analysis using selective incorporation of isotopically labeled amino acids,” Journal of the American Society for Mass Spectrometry, vol. 11, no. 1, pp. 78–82, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. X. Lai, L. Wang, H. Tang, and F. A. Witzmann, “A novel alignment method and multiple filters for exclusion of unqualified peptides to enhance label-free quantification using peptide intensity in lc-ms/ms,” Journal of Proteome Research, vol. 10, no. 10, pp. 4799–4812, 2011. View at Publisher · View at Google Scholar
  10. W. M. Old, K. Meyer-Arendt, L. Aveline-Wolf et al., “Comparison of label-free methods for quantifying human proteins by shotgun proteomics,” Molecular and Cellular Proteomics, vol. 4, no. 10, pp. 1487–1502, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. X. Wang, W. Zhu, K. Pradhan et al., “Feature extraction in the analysis of proteomic mass spectra,” Proteomics, vol. 6, no. 7, pp. 2095–2100, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Tsikas, M. T. Suchy, A. Mitschke, B. Beckmann, and F. M. Gutzki, “Measurement of nitrite in urine by gas chromatography-mass spectrometry,” Methods in Molecular Biology, vol. 844, pp. 277–293, 2012. View at Google Scholar
  13. G. Zanchetti, I. Floris, A. Piccinotti, S. Tameni, and A. Polettini, “Rapid and robust confirmation and quantification of 11-nor-delta9-tetrahydrocannabinol-9-carboxylic acid (thc-cooh) in urine by column switching lc-ms-ms analysis,” Journal of Mass Spectrometry, vol. 47, no. 1, pp. 124–130, 2012. View at Google Scholar
  14. K. Heinig, T. Wirz, F. Bucheli, V. Monin, and A. Gloge, “Sensitive determination of a pharmaceutical compound and its metabolites in human plasma by ultra-high performance liquid chromatography-tandem mass spectrometry with on-line solid-phase extraction,” Journal of Pharmaceutical and Biomedical Analysis, vol. 54, no. 4, pp. 742–749, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. P. M. Palagi, D. Walther, M. Quadroni et al., “MSight: an image analysis software for liquid chromatography-mass spectrometry,” Proteomics, vol. 5, no. 9, pp. 2381–2384, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. M. J. MacCoss and C. C. Wu, “Proteomic solutions for analytical challenges associated with alcohol research,” Alcohol Research and Health, vol. 31, no. 3, pp. 251–255, 2008. View at Google Scholar · View at Scopus
  17. M. Berth, F. M. Moser, M. Kolbe, and J. Bernhardt, “The state of the art in the analysis of two-dimensional gel electrophoresis images,” Applied Microbiology and Biotechnology, vol. 76, no. 6, pp. 1223–1243, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. O. Kohlbacher, K. Reinert, C. Gröpl et al., “TOPP—the OpenMS proteomics pipeline,” Bioinformatics, vol. 23, no. 2, pp. e191–e197, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. K. C. Leptos, D. A. Sarracino, J. D. Jaffe, B. Krastins, and G. M. Church, “MapQuant: open-source software for large-scale protein quantification,” Proteomics, vol. 6, no. 6, pp. 1770–1782, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. D. May, W. Law, M. Fitzgibbon, Q. Fang, and M. McIntosh, “Software platform for rapidly creating computational tools for mass spectrometry-based proteomics,” Journal of Proteome Research, vol. 8, no. 6, pp. 3212–3217, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Katajamaa, J. Miettinen, and M. Orešič, “MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data,” Bioinformatics, vol. 22, no. 5, pp. 634–636, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. L. N. Mueller, O. Rinner, A. Schmidt et al., “SuperHirn—a novel tool for high resolution LC-MS-based peptide/protein profiling,” Proteomics, vol. 7, no. 19, pp. 3470–3480, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. J. D. Jaffe, D. R. Mani, K. C. Leptos, G. M. Church, M. A. Gillette, and S. A. Carr, “PEPPeR, a platform for experimental proteomic pattern recognition,” Molecular and Cellular Proteomics, vol. 5, no. 10, pp. 1927–1941, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. C. C. Tsou, C. F. Tsai, Y. H. Tsui et al., “IDEAL-Q, an automated tool for label-free quantitation analysis using an efficient peptide alignment approach and spectral data validation,” Molecular and Cellular Proteomics, vol. 9, no. 1, pp. 131–144, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. F. Erhard and R. Zimmer, “Detecting outlier peptides in quantitative high-throughput mass spectrometry data,” Journal of Proteomics, vol. 75, no. 11, pp. 3230–3239, 2012. View at Google Scholar
  26. S. J. Callister, R. C. Barry, J. N. Adkins et al., “Normalization approaches for removing systematic biases associated with mass spectrometry and label-free proteomics,” Journal of Proteome Research, vol. 5, no. 2, pp. 277–286, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. L. Mayne, Z. Y. Kan, P. S. Chetty, A. Ricciuti, B. T. Walters, and S. W. Englander, “Many overlapping peptides for protein hydrogen exchange experiments by the fragment separation-mass spectrometry method,” Journal of the American Society for Mass Spectrometry, vol. 22, no. 11, pp. 1898–1905, 2011. View at Google Scholar
  28. B. Mann, M. Madera, Q. Sheng, H. Tang, Y. Mechref, and M. V. Novotny, “ProteinQuant Suite: a bundle of automated software tools for label-free quantitative proteomics,” Rapid Communications in Mass Spectrometry, vol. 22, no. 23, pp. 3823–3834, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. W. Zhu, J. W. Smith, and C. M. Huang, “Mass spectrometry-based label-free quantitative proteomics,” Journal of Biomedicine and Biotechnology, vol. 2010, Article ID 840518, 6 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. C. H. Chau, O. Rixe, H. McLeod, and W. D. Figg, “Validation of analytic methods for biomarkers used in drug development,” Clinical Cancer Research, vol. 14, no. 19, pp. 5967–5976, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. M. R. Richardson, Z. M. Segu, M. O. Price et al., “Alterations in the aqueous humor proteome in patients with Fuchs endothelial corneal dystrophy,” Molecular Vision, vol. 16, pp. 2376–2383, 2010. View at Google Scholar · View at Scopus
  32. A. Anshu, M. O. Price, M. R. Richardson et al., “Alterations in the aqueous humor proteome in patients with a glaucoma shunt device,” Molecular Vision, vol. 17, pp. 1891–1900, 2011. View at Google Scholar · View at Scopus
  33. X. Lai, B. L. Blazer-Yost, J. W. Clack et al., “Protein expression profiles of intestinal epithelial co-cultures after low-level exposure to functionalized carbon nanotubes,” International Journal of Biomedical Nanoscience and Nanotechnology. In press.
  34. T. Xia, R. F. Hamilton Jr., J. C. Bonner et al., “Inter-laboratory comparison of in vitro nanotoxicological assays from the niehs nanogo consortium,” Environmental Health Perspectives. In press.
  35. A. K. Vidanapathirana, X. Lai, S. C. Hilderbrand et al., “Multi-walled carbon nanotube directed gene and protein expression in cultured human aortic endothelial cells is influenced by suspension medium,” Toxicology, vol. 302, no. 2-3, pp. 114–122, 2012. View at Publisher · View at Google Scholar
  36. S. C. Tilton, N. J. Karin, A. Tolic et al., “Three human cell types respond to multi-walled carbon nanotubes and titanium dioxide nanobelts with cell-specific transcriptomic and proteomic expression patterns,” Nanotoxicology. In press.
  37. I. Lynch, T. Cedervall, M. Lundqvist, C. Cabaleiro-Lago, S. Linse, and K. A. Dawson, “The nanoparticle-protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century,” Advances in Colloid and Interface Science, vol. 134-135, pp. 167–174, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. B. L. Blazer-Yost, A. Banga, A. Amos et al., “Effect of carbon nanoparticles on renal epithelial cell structure, barrier function, and protein expression,” Nanotoxicology, vol. 5, no. 3, pp. 354–371, 2011. View at Google Scholar
  39. J. H. Shannahan, J. M. Brown, R. Chen et al., “Comparison of nanotube-protein corona composition in cell culture media,” Small. In press.
  40. T. Farrah, E. W. Deutsch, G. S. Omenn et al., “A high-confidence human plasma proteome reference set with estimated concentrations in peptideatlas,” Molecular & Cellular Proteomics, vol. 10, no. 9, Article ID M110.006353, 2011. View at Publisher · View at Google Scholar
  41. H. T. Huang, O. M. Brand, M. Mathew et al., “Myomaxin Is a novel transcriptional target of MEF2A that encodes a Xin-related α-actinin-interacting protein,” Journal of Biological Chemistry, vol. 281, no. 51, pp. 39370–39379, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. D. Pacholsky, P. Vakeel, M. Himmel et al., “Xin repeats define a novel actin-binding motif,” Journal of Cell Science, vol. 117, no. 22, pp. 5257–5268, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. D. Scumaci, M. Gaspari, M. Saccomanno et al., “Assessment of an ad hoc procedure for isolation and characterization of human albuminome,” Analytical Biochemistry, vol. 418, no. 1, pp. 161–163, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. R. L. Gundry, Q. Fu, C. A. Jelinek, J. E. Van Eyk, and R. J. Cotter, “Investigation of an albumin-enriched fraction of human serum and its albuminome,” Proteomics, vol. 1, no. 1, pp. 73–88, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. R. L. Gundry, M. Y. White, J. Nogee, I. Tchernyshyov, and J. E. Van Eyk, “Assessment of albumin removal from an immunoaffinity spin column: critical implications for proteomic examination of the albuminome and albumin-depleted samples,” Proteomics, vol. 9, no. 7, pp. 2021–2028, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Zhou, D. A. Lucas, K. C. Chan et al., “An investigation into the human serum ‘interactome’,” Electrophoresis, vol. 25, no. 9, pp. 1289–1298, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. K. L. Prince, S. C. Colvin, X. Lai, F. A. Witzmann, and S. J. Rhodes, “Developmental analysis and influence of genetic background on the lhx3 w227ter mouse model of combined pituitary hormone deficiency disease,” Endocrinology. In press.
  48. X. Lai, “A reproducible method to enrich membrane proteins with high-purity and high-yield for an lc-ms/ms approach in quantitative membrane proteomics,” Electrophoresis. In press.
  49. J. M. Gilmore and M. P. Washburn, “Advances in shotgun proteomics and the analysis of membrane proteomes,” Journal of Proteomics, vol. 73, no. 11, pp. 2078–2091, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. S. J. Cordwell and T. E. Thingholm, “Technologies for plasma membrane proteomics,” Proteomics, vol. 10, no. 4, pp. 611–627, 2010. View at Publisher · View at Google Scholar · View at Scopus