Table of Contents
International Journal of Proteomics
Volume 2015 (2015), Article ID 536537, 12 pages
http://dx.doi.org/10.1155/2015/536537
Research Article

A Proteomic Characterization of Bordetella pertussis Clinical Isolates Associated with a California State Pertussis Outbreak

1Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Chamblee, GA 30341, USA
2Division of Bacterial Diseases, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
3Oak Ridge Institute for Science and Education, Oak Ridge, TN 37831-0117, USA

Received 6 March 2015; Accepted 1 May 2015

Academic Editor: Michael Hippler

Copyright © 2015 Yulanda M. Williamson et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Bordetella pertussis (Bp) is the etiologic agent of pertussis (whooping cough), a highly communicable infection. Although pertussis is vaccine preventable, in recent years there has been increased incidence, despite high vaccine coverage. Possible reasons for the rise in cases include the following: Bp strain adaptation, waning vaccine immunity, increased surveillance, and improved clinical diagnostics. A pertussis outbreak impacted California (USA) in 2010; children and preadolescents were the most affected but the burden of disease fell mainly on infants. To identify protein biomarkers associated with this pertussis outbreak, we report a whole cellular protein characterization of six Bp isolates plus the pertussis acellular vaccine strain Bp Tohama I (T), utilizing gel-free proteomics-based mass spectrometry (MS). MS/MS tryptic peptide detection and protein database searching combined with western blot analysis revealed three Bp isolates in this study had markedly reduced detection of pertactin (Prn), a subunit of pertussis acellular vaccines. Additionally, antibody affinity capture technologies were implemented using anti-Bp T rabbit polyclonal antisera and whole cellular proteins to identify putative immunogens. Proteome profiling could shed light on pathogenesis and potentially lay the foundation for reduced infection transmission strategies and improved clinical diagnostics.