Table of Contents
International Journal of Proteomics
Volume 2015 (2015), Article ID 678527, 9 pages
http://dx.doi.org/10.1155/2015/678527
Research Article

Hypoxia Strongly Affects Mitochondrial Ribosomal Proteins and Translocases, as Shown by Quantitative Proteomics of HeLa Cells

1Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, 0315 Oslo, Norway
2Department of Physics, University of Oslo, P.O. Box 1048 Blindern, 0315 Oslo, Norway
3The Biotechnology Centre of Oslo, University of Oslo, P.O. Box 1125 Blindern, 0317 Oslo, Norway
4Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway

Received 27 June 2015; Revised 7 August 2015; Accepted 18 August 2015

Academic Editor: Michael Hippler

Copyright © 2015 Paula A. Bousquet et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Vaupel, F. Kallinowski, and P. Okunieff, “Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review,” Cancer Research, vol. 49, no. 23, pp. 6449–6465, 1989. View at Google Scholar · View at Scopus
  2. Y. M. Lee, C.-H. Jeong, S.-Y. Koo et al., “Determination of hypoxic region by hypoxia marker in developing mouse embryos in vivo: a possible signal for vessel development,” Developmental Dynamics, vol. 220, no. 2, pp. 175–186, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. G. L. Semenza, “Hypoxia, clonal selection, and the role of HIF-1 in tumor progression,” Critical Reviews in Biochemistry and Molecular Biology, vol. 35, no. 2, pp. 71–103, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. M. W. Dewhirst, Y. Cao, and B. Moeller, “Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response,” Nature Reviews Cancer, vol. 8, no. 6, pp. 425–437, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. D. M. Brizel, S. P. Scully, J. M. Harrelson et al., “Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma,” Cancer Research, vol. 56, no. 5, pp. 941–943, 1996. View at Google Scholar · View at Scopus
  6. T. Y. Reynolds, S. Rockwell, and P. M. Glazer, “Genetic instability induced by the tumor microenvironment,” Cancer Research, vol. 56, no. 24, pp. 5754–5757, 1996. View at Google Scholar · View at Scopus
  7. R. H. Wenger, “Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression,” The FASEB Journal, vol. 16, no. 10, pp. 1151–1162, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. G. L. Semenza, “Hypoxia-inducible factor 1: master regulator of O2 homeostasis,” Current Opinion in Genetics & Development, vol. 8, no. 5, pp. 588–594, 1998. View at Google Scholar
  9. E. Racker, “History of the Pasteur effect and its pathobiology,” Molecular and Cellular Biochemistry, vol. 5, no. 1-2, pp. 17–23, 1974. View at Publisher · View at Google Scholar · View at Scopus
  10. O. Warburg, “On respiratory impairment in cancer cells,” Science, vol. 124, no. 3215, pp. 269–270, 1956. View at Google Scholar · View at Scopus
  11. O. Warburg, F. Wind, and E. Negelein, “The metabolism of tumors in the body,” The Journal of General Physiology, vol. 8, no. 6, pp. 519–530, 1927. View at Publisher · View at Google Scholar
  12. N. C. Denko, “Hypoxia, HIF1 and glucose metabolism in the solid tumour,” Nature Reviews Cancer, vol. 8, no. 9, pp. 705–713, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. R. A. Gatenby and R. J. Gillies, “Why do cancers have high aerobic glycolysis?” Nature Reviews Cancer, vol. 4, no. 11, pp. 891–899, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. R. J. DeBerardinis, N. Sayed, D. Ditsworth, and C. B. Thompson, “Brick by brick: metabolism and tumor cell growth,” Current Opinion in Genetics and Development, vol. 18, no. 1, pp. 54–61, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Ebbesen, E. O. Pettersen, T. A. Gorr et al., “Taking advantage of tumor cell adaptations to hypoxia for developing new tumor markers and treatment strategies,” Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 24, supplement 1, no. 1, pp. 1–39, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. X.-D. Huang, Z.-F. Wang, L.-M. Dai, and Z.-Q. Li, “Microarray analysis of the hypoxia-induced gene expression profile in malignant C6 glioma cells,” Asian Pacific Journal of Cancer Prevention, vol. 13, no. 9, pp. 4793–4799, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. J.-T. Chi, Z. Wang, D. S. A. Nuyten et al., “Gene expression programs in response to hypoxia: cell type specificity and prognostic significance in human cancers,” PLoS Medicine, vol. 3, no. 3, article e47, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. B. S. Sørensen, M. R. Horsman, H. Vorum, B. Honoré, J. Overgaard, and J. Alsner, “Proteins upregulated by mild and severe hypoxia in squamous cell carcinomas in vitro identified by proteomics,” Radiotherapy and Oncology, vol. 92, no. 3, pp. 443–449, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Vorum, M. Østergaard, P. Hensechke, J. J. Enghild, M. Riazati, and G. E. Rice, “Proteomic analysis of hyperoxia-induced responses in the human choriocarcinoma cell line JEG-3,” Proteomics, vol. 4, no. 3, pp. 861–867, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. L. H. Stockwin, J. Blonder, M. A. Bumke et al., “Proteomic analysis of plasma membrane from hypoxia-adapted malignant melanoma,” Journal of Proteome Research, vol. 5, no. 11, pp. 2996–3007, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Ren, P. Hao, B. Dutta et al., “Hypoxia modulates A431 cellular pathways association to tumor radioresistance and enhanced migration revealed by comprehensive proteomic and functional studies,” Molecular and Cellular Proteomics, vol. 12, no. 2, pp. 485–498, 2013. View at Publisher · View at Google Scholar · View at Scopus
  22. M.-C. Djidja, J. Chang, A. Hadjiprocopis et al., “Identification of hypoxia-regulated proteins using MALDI-mass spectrometry imaging combined with quantitative proteomics,” Journal of Proteome Research, vol. 13, no. 5, pp. 2297–2313, 2014. View at Publisher · View at Google Scholar · View at Scopus
  23. S.-E. Ong, B. Blagoev, I. Kratchmarova et al., “Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics,” Molecular & Cellular Proteomics, vol. 1, no. 5, pp. 376–386, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. S.-E. Ong, L. J. Foster, and M. Mann, “Mass spectrometric-based approaches in quantitative proteomics,” Methods, vol. 29, no. 2, pp. 124–130, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. E. O. Pettersen, L. H. Larsen, N. B. Ramsing, and P. Ebbesen, “Pericellular oxygen depletion during ordinary tissue culturing, measured with oxygen microsensors,” Cell Proliferation, vol. 38, no. 4, pp. 257–267, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Cox and M. Mann, “MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification,” Nature Biotechnology, vol. 26, no. 12, pp. 1367–1372, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Cox, N. Neuhauser, A. Michalski, R. A. Scheltema, J. V. Olsen, and M. Mann, “Andromeda: a peptide search engine integrated into the MaxQuant environment,” Journal of Proteome Research, vol. 10, no. 4, pp. 1794–1805, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. W. da Huang, B. T. Sherman, and R. A. Lempicki, “Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists,” Nucleic Acids Research, vol. 37, no. 1, pp. 1–13, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. D. W. Huang, B. T. Sherman, and R. A. Lempicki, “Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources,” Nature Protocols, vol. 4, no. 1, pp. 44–57, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. J. A. Vizcaíno, E. W. Deutsch, R. Wang et al., “ProteomeXchange provides globally co-ordinated proteomics data submission and dissemination,” Nature Biotechnology, vol. 32, no. 3, pp. 223–226, 2014. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Franceschini, D. Szklarczyk, S. Frankild et al., “STRING v9.1: protein-protein interaction networks, with increased coverage and integration,” Nucleic Acids Research, vol. 41, no. 1, pp. D808–D815, 2013. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Mi, A. Muruganujan, and P. D. Thomas, “PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees,” Nucleic Acids Research, vol. 41, no. 1, pp. D377–D386, 2013. View at Publisher · View at Google Scholar · View at Scopus
  33. A. L. Harris, “Hypoxia—a key regulatory factor in tumour growth,” Nature Reviews Cancer, vol. 2, no. 1, pp. 38–47, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. J. F. O'Rourke, C. W. Pugh, S. M. Bartlett, and P. J. Ratcliffe, “Identification of hypoxically inducible mRNAs in HeLa cells using differential-display PCR—role of hypoxia-inducible factor-1,” European Journal of Biochemistry, vol. 241, no. 2, pp. 403–410, 1996. View at Publisher · View at Google Scholar · View at Scopus
  35. G. L. Semenza, P. H. Roth, H.-M. Fang, and G. L. Wang, “Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1,” Journal of Biological Chemistry, vol. 269, no. 38, pp. 23757–23763, 1994. View at Google Scholar · View at Scopus
  36. S. Choi, K. Cho, J. Kim et al., “Comparative proteome analysis using amine-reactive isobaric tagging reagents coupled with 2D LC/MS/MS in 3T3-L1 adipocytes following hypoxia or normoxia,” Biochemical and Biophysical Research Communications, vol. 383, no. 1, pp. 135–140, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. A. P. Halestrap and M. C. Wilson, “The monocarboxylate transporter family-role and regulation,” IUBMB Life, vol. 64, no. 2, pp. 109–119, 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Anderson, A. T. Bankier, B. G. Barrell et al., “Sequence and organization of the human mitochondrial genome,” Nature, vol. 290, no. 5806, pp. 457–465, 1981. View at Publisher · View at Google Scholar · View at Scopus
  39. P. Dolezal, V. Likic, J. Tachezy, and T. Lithgow, “Evolution of the molecular machines for protein import into mitochondria,” Science, vol. 313, no. 5785, pp. 314–318, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. W. Neupert and J. M. Herrmann, “Translocation of proteins into mitochondria,” Annual Review of Biochemistry, vol. 76, no. 1, pp. 723–749, 2007. View at Publisher · View at Google Scholar
  41. O. Schmidt, N. Pfanner, and C. Meisinger, “Mitochondrial protein import: from proteomics to functional mechanisms,” Nature Reviews Molecular Cell Biology, vol. 11, no. 9, pp. 655–667, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Koumenis and B. G. Wouters, “‘Translating’ tumor hypoxia: unfolded protein response (UPR)-dependent and UPR-independent pathways,” Molecular Cancer Research, vol. 4, no. 7, pp. 423–436, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. D. M. Gilkes, S. Bajpai, P. Chaturvedi, D. Wirtz, and G. L. Semenza, “Hypoxia-inducible factor 1 (HIF-1) promotes extracellular matrix remodeling under hypoxic conditions by inducing P4HA1, P4HA2, and PLOD2 expression in fibroblasts,” The Journal of Biological Chemistry, vol. 288, no. 15, pp. 10819–10829, 2013. View at Publisher · View at Google Scholar · View at Scopus
  44. D. M. Gilkes, S. Bajpai, C. C. Wong et al., “Procollagen lysyl hydroxylase 2 is essential for hypoxia-induced breast cancer metastasis,” Molecular Cancer Research, vol. 11, no. 5, pp. 456–466, 2013. View at Publisher · View at Google Scholar · View at Scopus
  45. N. Goda, H. E. Ryan, B. Khadivi, W. McNulty, R. C. Rickert, and R. S. Johnson, “Hypoxia-inducible factor 1α is essential for cell cycle arrest during hypoxia,” Molecular and Cellular Biology, vol. 23, no. 1, pp. 359–369, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. A. J. Giaccia, “Hypoxic stress proteins: survival of the fittest,” Seminars in Radiation Oncology, vol. 6, no. 1, pp. 46–58, 1996. View at Publisher · View at Google Scholar · View at Scopus
  47. P. Graff, Ø. Åmellem, J. Seim, T. Stokke, and E. O. Pettersen, “The role of p27 in controlling the oxygen-dependent checkpoint of mammalian cells in late G1,” Anticancer Research, vol. 25, no. 3, pp. 2259–2267, 2005. View at Google Scholar · View at Scopus
  48. Ø. Åmellem, J. A. Sandvik, T. Stokke, and E. O. Pettersen, “The retinoblastoma protein-associated cell cycle arrest in S-phase under moderate hypoxia is disrupted in cells expressing HPV18 E7 oncoprotein,” British Journal of Cancer, vol. 77, no. 6, pp. 862–872, 1998. View at Publisher · View at Google Scholar · View at Scopus
  49. L. B. Gardner, Q. Li, M. S. Park, W. M. Flanagan, G. L. Semenza, and C. V. Dang, “Hypoxia inhibits G1/S transition through regulation of p27 expression,” The Journal of Biological Chemistry, vol. 276, no. 11, pp. 7919–7926, 2001. View at Publisher · View at Google Scholar · View at Scopus
  50. Ø. Åmellem and E. O. Pettersen, “Cell inactivation and cell cycle inhibition as induced by extreme hypoxia: the possible role of cell cycle arrest as a protection against hypoxia-induced lethal damage,” Cell Proliferation, vol. 24, no. 2, pp. 127–141, 1991. View at Publisher · View at Google Scholar · View at Scopus