Table of Contents
International Journal of Spectroscopy
Volume 2010, Article ID 384956, 7 pages
http://dx.doi.org/10.1155/2010/384956
Research Article

A Technique for Measuring Microparticles in Polar Ice Using Micro-Raman Spectroscopy

1Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
2Hokkaido National Industrial Research Institute, Sapporo 062-8517, Japan
3Division of Applied Physics, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan

Received 24 May 2010; Accepted 8 July 2010

Academic Editor: Veronica Vaida

Copyright © 2010 Toshimitsu Sakurai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Fujii, M. Kohno, S. Matoba, H. Motoyama, and O. Watanabe, “A 320 k-year record of microparticles in the Dome Fuji, Antarctica ice core measured by laser-light scattering,” Memoirs of National Institute of Polar Research, vol. 57, pp. 46–62, 2003. View at Google Scholar
  2. E. W. Wolff, H. Fischer, F. Fundel et al., “Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles,” Nature, vol. 440, no. 7083, pp. 491–496, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. F. Lambert, B. Delmonte, J. R. Petit et al., “Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core,” Nature, vol. 452, no. 7187, pp. 616–619, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Delmonte, J. Petit, and V. Maggi, “Glacial to Holocene implications of the new 27000-year dust record from the EPICA Dome C (East Antarctica) ice core,” Climate Dynamics, vol. 18, no. 8, pp. 647–660, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. P. R. F. Barnes, R. Mulvaney, E. W. Wolff, and K. Robinson, “A technique for the examination of polar ice using the scanning electron microscope,” Journal of Microscopy, vol. 205, no. 2, pp. 118–124, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Svensson, P. E. Biscaye, and F. E. Grousset, “Characterization of late glacial continental dust in the Greenland Ice Core Project ice core,” Journal of Geophysical Research D, vol. 105, no. 4, pp. 4637–4656, 2000. View at Google Scholar · View at Scopus
  7. M. Legrand, M. de Angelis, and F. Maupetit, “Field investigation of major and minor ions along summit (Central Greenland) ice cores by ion chromatography,” Journal of Chromatography, vol. 640, no. 1-2, pp. 251–258, 1993. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Iizuka, M. Takata, T. Hondoh, and Y. Fujii, “High-time-resolution profiles of soluble ions in the last glacial period of a Dome Fuji (Antarctica) deep ice core,” Annals of Glaciology, vol. 39, pp. 452–456, 2005. View at Google Scholar · View at Scopus
  9. Y. Iizuka, T. Hondoh, and Y. Fujii, “Na2SO4 and MgSO4 salts during the Holocene period derived by high-resolution depth analysis of a Dome Fuji ice core,” Journal of Glaciology, vol. 52, no. 176, pp. 58–64, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Iizuka, T. Hondoh, and Y. Fujii, “Antarctic sea ice extent during the Holocene reconstructed from inland ice core evidence,” Journal of Geophysical Research D, vol. 113, no. 15, Article ID D15114, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Röthlisberger, M. Bigler, M. Hutterli et al., “Technique for continuous high-resolution analysis of trace substances in firn and ice cores,” Environmental Science and Technology, vol. 34, no. 2, pp. 338–342, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. E. W. Wolff and J. G. Paren, “A two-phase model of electrical conduction in polar ice sheets,” Journal of Geophysical Research, vol. 89, no. 11, pp. 9433–9438, 1984. View at Google Scholar · View at Scopus
  13. R. Mulvaney, K. Oates, and E. W. Wolff, “Sulphuric acid at grain boundaries in Antarctic ice,” Nature, vol. 331, no. 6153, pp. 247–249, 1988. View at Google Scholar · View at Scopus
  14. P. R. F. Barnes, R. Mulvaney, E. W. Wolff, and K. Robinson, “A technique for the examination of polar ice using the scanning electron microscope,” Journal of Microscopy, vol. 205, no. 2, pp. 118–124, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. I. Baker and D. Cullen, “SEM/EDS observations of impurities in polar ice: artifacts or not?” Journal of Glaciology, vol. 49, no. 165, pp. 184–190, 2003. View at Google Scholar · View at Scopus
  16. H. Fukazawa, K. Sugiyama, S. Mae, H. Narita, and T. Hondoh, “Acid ions at triple junction of Antarctic ice observed by Raman scattering,” Geophysical Research Letters, vol. 25, no. 15, pp. 2845–2848, 1998. View at Google Scholar · View at Scopus
  17. A. W. Rempel, E. D. Waddington, J. S. Wettlaufer, and M. G. Worster, “Possible displacement of the climate signal in ancient ice by premelting and anomalous diffusion,” Nature, vol. 411, no. 6837, pp. 568–571, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. A. W. Rempel, J. S. Wettlaufer, and E. D. Waddington, “Anomalous diffusion of multiple impurity species: predicted implications for the ice core climate records,” Journal of Geophysical Research B, vol. 107, no. 12, pp. 1–12, 2002. View at Google Scholar · View at Scopus
  19. H. Ohno, M. Igarashi, and T. Hondoh, “Salt inclusions in polar ice core: location and chemical form of water-soluble impurities,” Earth and Planetary Science Letters, vol. 232, no. 1-2, pp. 171–178, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Ohno, M. Igarashi, and T. Hondoh, “Characteristics of salt inclusions in polar ice from Dome Fuji, East Antarctica,” Geophysical Research Letters, vol. 33, no. 8, Article ID L08501, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Iizuka, S. Horikawa, T. Sakurai et al., “A relationship between ion balance and the chemical compounds of salt inclusions found in the Greenland Ice Core Project and Dome Fuji ice cores,” Journal of Geophysical Research D, vol. 113, no. 7, Article ID D07303, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Iizuka, T. Miyake, M. Hirabayashi et al., “Constituent elements of insoluble and non-volatile particles during the Last Glacial Maximum exhibited in the Dome Fuji (Antarctica) ice core,” Journal of Glaciology, vol. 55, no. 191, pp. 552–562, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. F. E. Genceli, S. Horikawa, Y. Iizuka et al., “Meridianiite detected in ice,” Journal of Glaciology, vol. 55, no. 189, pp. 117–122, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Sakurai, Y. Ilzuka, S. Horlkawa et al., “Direct observation of salts as micro-inclusions in the Greenland GRIP ice core,” Journal of Glaciology, vol. 55, no. 193, pp. 777–783, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. D. R. Lide, Ed., CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, Fla, USA, 81st edition, 2000-2001.
  26. E. Usdowski and M. Dietzel, Atlas and Data of Solid-Solution Equilibria of Marine Evaporites, Springer, Berlin, Germany, 1998.
  27. W. F. Linke, Solubilities: Inorganic and Metal-Organic Compounds, A-Ir, vol. 1, American Chemical Society, Washington, DC, USA, 4th edition, 1958.
  28. W. F. Linke, Solubilities: Inorganic and Metal-Organic Compounds, K-Z, vol. 2, American Chemical Society, Washington, DC, USA, 4th edition, 1965.
  29. F. E. Genceli, M. Lutz, A. L. Spek, and G.-J. Witkamp, “Crystallization and characterization of a new magnesium sulfate hydrate MgSO4·11H2O,” Crystal Growth and Design, vol. 7, no. 12, pp. 2460–2466, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Sakurai, Y. Iizuka, S. Horikawa, T. Uchida, and T. Hondoh, “Finding of sulfate salt as liquid microparticles in Dome Fuji ice core, Antarctica,” submitted to Earth and Planetary Science Letters.
  31. G. Schweiger, “In-situ determination of the molecular composition of aerosol particles in a monodisperse model aerosol,” Particle Characterization, vol. 4, no. 2, pp. 67–73, 1987. View at Google Scholar · View at Scopus
  32. G. Schweiger, “Raman scattering on microparticles: size dependence,” Journal of the Optical Society of America B, vol. 8, no. 8, pp. 1770–1778, 1991. View at Publisher · View at Google Scholar
  33. R. Vehring, H. Moritz, D. Niekamp, G. Schweiger, and P. Heinrich, “Linear Raman spectroscopy on droplet chains: a new experimental method for the analysis of fast transport processes and reactions on microparticles,” Applied Spectroscopy, vol. 49, no. 9, pp. 1215–1224, 1995. View at Google Scholar