Table of Contents
International Journal of Spectroscopy
Volume 2011, Article ID 458089, 8 pages
http://dx.doi.org/10.1155/2011/458089
Research Article

In Situ IR Characterization of CO Interacting with Rh Nanoparticles Obtained by Calcination and Reduction of Hydrotalcite-Type Precursors

1Dipartimento di Chimica Industriale e dei Materiali, Alma Mater Studiorum-Università di Bologna, V.le Risorgimento 4, 40136 Bologna, Italy
2Air Liquide, Centre de Recherche Claude Delorme1, Chemin de la Porte des Loges, BP 126, Les Loges-en-Josas, 78354 Jouy-en-Josas Cedex, France
3Dipartimento di Scienza dei Materiali e Ingegneria Chimica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
4CpR-INSTM for Materials with Controlled Porosity, Via Giusti 9, 50121 Firenze, Italy

Received 3 May 2011; Accepted 21 June 2011

Academic Editor: Sergio Armenta Estrela

Copyright © 2011 F. Basile et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Casenave, H. Martinez, C. Guimon et al., “Acid-base properties of Mg-Ni-Al mixed oxides using LDH as precursors,” Thermochimica Acta, vol. 379, no. 1-2, pp. 85–93, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Albertazzi, F. Basile, P. Benito et al., “Effect of silicates on the structure of Ni-containing catalysts obtained from hydrotalcite-type precursors,” Catalysis Today, vol. 128, no. 3-4, pp. 258–263, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. F. Cavani, F. Trifirò, and A. Vaccari, “Hydrotalcite-type anionic clays: preparation, properties and applications,” Catalysis Today, vol. 11, no. 2, pp. 173–301, 1991. View at Google Scholar · View at Scopus
  4. F. Basile, P. Benito, G. Fornasari, and A. Vaccari, “Hydrotalcite-type precursors of active catalysts for hydrogen production,” Applied Clay Science, vol. 48, no. 1-2, pp. 250–259, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. F. Basile, G. Fornasari, M. Gazzano, A. Kiennemann, and A. Vaccari, “Preparation and characterisation of a stable Rh catalyst for the partial oxidation of methane,” Journal of Catalysis, vol. 217, no. 2, pp. 245–252, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. J. T. Yates Jr., T. M. Duncan, and R. W. Vaughan, “Infrared spectra of chemisorbed CO on Rh,” Journal of Chemical Physics, vol. 71, 3908 pages, 1979. View at Google Scholar
  7. A. Erdöhelyi and F. Solymosi, “Effects of the support on the adsorption and dissociation of CO and on the reactivity of surface carbon on Rh catalysts,” Journal of Catalysis, vol. 84, no. 2, pp. 446–460, 1983. View at Google Scholar · View at Scopus
  8. S. Trautmann and M. Baerns, “Infrared Spectroscopic Studies of CO Adsorption on Rhodium Supported by SiO2, Al2O3, and TiO2,” Journal of Catalysis, vol. 150, no. 2, pp. 335–344, 1994. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Kundakovic, D. R. Mullins, and S. H. Overbury, “Adsorption and reaction of H2O and CO on oxidized and reduced Rh/CeOx(111) surfaces,” Surface Science, vol. 457, no. 1, pp. 51–62, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. E. Finocchio, G. Buscai, P. Forzatti, G. Groppi, and A. Beretta, “State of supported rhodium nanoparticles for methane catalytic partial oxidation (CPO); FT-IR studies,” Langmuir, vol. 23, no. 20, pp. 10419–10428, 2007. View at Publisher · View at Google Scholar
  11. K. Hadjiivanov, E. Ivanova, L. Dimitrov, and H. Knözinger, “FTIR spectroscopic study of CO adsorption on Rh-ZSM-5: detection of Rh +-CO species,” Journal of Molecular Structure, vol. 661-662, no. 1–3, pp. 459–463, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Basile, G. Fornasari, M. Gazzano, and A. Vaccari, “Rh, Ru and Ir catalysts obtained by HT precursors: effect of the thermal evolution and composition on the material structure and use,” Journal of Materials Chemistry, vol. 12, no. 11, pp. 3296–3303, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. F. Basile, P. Benito, G. Fornasari et al., “Ni-catalysts obtained from silicate intercalated HTlcs active in the catalytic partial oxidation of methane: influence of the silicate content,” Catalysis Today, vol. 142, no. 1-2, pp. 78–84, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Chafik, D. I. Kondarides, and X. E. Verykios, “Catalytic reduction of NO by CO over rhodium catalysts: 1. Adsorption and displacement characteristics Investigated by in situ FTIR and transient-MS techniques,” Journal of Catalysis, vol. 190, no. 2, pp. 446–459, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. D. I. Kondarides, T. Chafik, and X. E. Verykios, “Catalytic reduction of NO by CO over Rhodium catalysts: 2. Effect of oxygen on the nature, population, and reactivity of surface species formed under reaction conditions,” Journal of Catalysis, vol. 191, no. 1, pp. 147–164, 2000. View at Google Scholar · View at Scopus
  16. H. Miessner, D. Gutschick, H. Ewald, and H. Müller, “The influence of support on the geminal dicarbonyl species RhI(CO)2 on supported rhodium catalysts: an IR spectroscopic study,” Journal of Molecular Catalysis, vol. 36, no. 3, pp. 359–373, 1986. View at Google Scholar · View at Scopus
  17. A. M. Turek, I. E. Wachs, and E. DeCanio, “Acidic properties of alumina-supported metal oxide catalysts: an infrared spectroscopy study,” Journal of Physical Chemistry, vol. 96, no. 12, pp. 5000–5007, 1992. View at Google Scholar · View at Scopus
  18. A. A. Davydov, M. L. Shepot’ko, and A. A. Budneva, “Study of the state of transition-metal cations on the catalyst surface by IR spectroscopy using adsorbed probe-molecules (CO, NO): X. Identification of the state of copper on the surface of Cu/SiO2,” Kinetics and Catalysis, vol. 35, p. 272, 1994. View at Google Scholar
  19. J. C. Lavalley, “Infrared spectrometric studies of the surface basicity of metal oxides and zeolites using adsorbed probe molecules,” Catalysis Today, vol. 27, no. 3-4, pp. 377–401, 1996. View at Google Scholar · View at Scopus
  20. G. Bergeret, P. Gallezot, P. Gelin et al., “CO-induced disintegration of rhodium aggregates supported in zeolites: in situ synthesis of rhodium carbonyl clusters,” Journal of Catalysis, vol. 104, no. 2, pp. 279–287, 1987. View at Google Scholar · View at Scopus
  21. F. Solymosi, M. Pásztor, and G. Rákhely, “Infrared studies of the effects of promoters on CO-induced structural changes in Rh,” Journal of Catalysis, vol. 110, no. 2, pp. 413–415, 1988. View at Google Scholar · View at Scopus
  22. H. F. J. Van't Blik, J. B. A. D. Van Zon, T. Hulzinga, J. C. Vis, D. C. Koningsberger, and R. Prins, “An extended X-ray absorption fine structure spectroscopy study of a highly dispersed Rh/Al2O3 catalyst: the influence of CO chemisorption on the topology of rhodium,” Journal of Physical Chemistry, vol. 87, no. 13, pp. 2264–2267, 1983. View at Google Scholar · View at Scopus
  23. J. Raskó and J. Bontovics, “FTIR study of the rearrangement of adsorbed CO species on Al2O3-supported rhodium catalysts,” Catalysis Letters, vol. 58, no. 1, pp. 27–32, 1999. View at Google Scholar · View at Scopus
  24. M. Primet, “Infrared study of CO chemisorption on zeolite and alumina supported rhodium,” Journal of the Chemical Society, Faraday Transactions 1, vol. 74, pp. 2570–2580, 1978. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Basu, D. Panayotov, and J. T. Yates, “Rhodium-carbon monoxide surface chemistry: the involvement of surface hydroxyl groups on Al2O3 and SiO2 supports,” Journal of the American Chemical Society, vol. 110, no. 7, pp. 2074–2081, 1988. View at Google Scholar · View at Scopus
  26. A. Bossi, G. Carnisio, F. Garmassi, G. Giunchi, G. Petrini, and L. Zanderighi, “Isotopic equilibration of carbon monoxide catalyzed by supported ruthenium,” Journal of Catalysis, vol. 65, p. 16, 1980. View at Google Scholar
  27. K. L. Zhang, A. Kladi, and X. E. Verykios, “Structural alterations of highly dispersed Rh/TiO2 catalyst upon CO adsorption and desorption investigated by infrared spectroscopy,” Journal of Molecular Catalysis, vol. 89, no. 1-2, pp. 229–246, 1994. View at Google Scholar · View at Scopus
  28. C. A. Rice, S. D. Worley, C. W. Curtis, J. A. Guin, and A. R. Tarrer, “The oxidation state of dispersed Rh on AI2O3,” The Journal of Chemical Physics, vol. 74, no. 11, pp. 6487–6497, 1981. View at Google Scholar · View at Scopus
  29. G. Lafaye, C. Mihut, C. Especel, P. Marécot, and M. D. Amiridis, “FTIR studies of CO adsorption on Rh-Ge/Al2O3 catalysts prepared by surface redox reactions,” Langmuir, vol. 20, no. 24, pp. 10612–10616, 2004. View at Publisher · View at Google Scholar · View at Scopus