Table of Contents Author Guidelines Submit a Manuscript
International Journal of Spectroscopy
Volume 2012 (2012), Article ID 124672, 14 pages
http://dx.doi.org/10.1155/2012/124672
Review Article

Vital Autofluorescence: Application to the Study of Plant Living Cells

Laboratory of Microspectral Analysis of Cells and Cellular Systems and Optical Department Russian Academy of Sciences, Institute of Cell Biophysics, RAS, Institutskaya Str. 3, Pushchino, Moscow Region 142290, Russia

Received 22 March 2012; Revised 18 June 2012; Accepted 16 July 2012

Academic Editor: Jin Zhang

Copyright © 2012 Victoria V. Roshchina. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. L. Taylor and E. D. Salmon, “Basic fluorescence microscopy,” in Methods in Cell Biology: Living Cell in Culture, J. L. Wang and D. L. Taylor, Eds., pp. 207–237, Academic Press, San Diego, Calif, USA, 1989. View at Google Scholar
  2. H. Andersson, T. Baechi, M. Hoechl, and C. Richter, “Autofluorescence of living cells,” Journal of Microscopy, vol. 191, no. 1, pp. 1–7, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. O. S. Wolfbeis, “The fluorescence of organic natural products,” in Molecular Luminescence Spectroscopy: Methods and Applications, S. G. Schulman, Ed., pp. 167–370, John Wiley & Sons, New York, NY, USA, 1985. View at Google Scholar
  4. V. V. Roshchina, “Cellular models to study the allelopathic mechanisms,” Allelopathy Journal, vol. 13, no. 1, pp. 3–16, 2004. View at Google Scholar · View at Scopus
  5. V. V. Roshchina, V. A. Yashin, A. V. Yashina, and M. V. Gol'tyaev, “Colored allelochemicals in modelling of cell-cell allelopathic interactions,” Allelopathy Journal, vol. 28, no. 1, pp. 1–12, 2011. View at Google Scholar
  6. C. Pöhlker, J. A. Huffman, and U. Pöschl, “Autofluorescence of atmospheric bioaerosols—fluorescent biomoleculesand potential interferences,” Atmospheric Measurement Techniques, vol. 4, no. 5, pp. 5857–5933, 2011. View at Publisher · View at Google Scholar
  7. G. Agati, “Response of the in vivo chlorophyll fluorescence spectrum to environmental factors and laser excitation wavelength,” Pure and Applied Optics, vol. 7, no. 4, pp. 797–807, 1998. View at Publisher · View at Google Scholar · View at Scopus
  8. V. V. Roshchina, Fluorescing World of Plant Secreting Cells, Science, Enfield, UK, 2008.
  9. M. N. Merzlyak, “Liposoluble fluorescent “aging pigments” in plants,” in Lipofuscin-1987: State of the Art, I. Nagy, Ed., pp. 451–452, Akademiai Kiado, Elsevier, Budapest, Amsterdam, The Netherlands, 1988. View at Google Scholar
  10. V. V. Roshchina, “Autofluorescence of plant secreting cells as a biosensor and bioindicator reaction,” Journal of Fluorescence, vol. 13, no. 5, pp. 403–420, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. M. T. M. Willemse, “Autofluorescence of pollen wall of Lilium and changes in pollen wall of Gasteria and Lilium anther,” Acta Societatis Botanicorum Poloniae, vol. 50, pp. 103–110, 1981. View at Google Scholar
  12. M. N. B. M. Driessen, M. T. M. Willemse, and J. A. G. van Luijin, “Grass pollen grain determination by light- and UV-microscopy,” Grana, vol. 28, no. 2, pp. 115–122, 1989. View at Publisher · View at Google Scholar
  13. J. C. Audran and M. T. M. Willemse, “Wall development and its autofluorescence of sterile and fertile Vicia faba L. Pollen,” Protoplasma, vol. 110, no. 2, pp. 106–111, 1982. View at Publisher · View at Google Scholar · View at Scopus
  14. S. A. Weinbaum and V. S. Polito, “Assessment of pollen retention using exine autofluorescence,” Mikroskopie, vol. 42, pp. 278–280, 1985. View at Google Scholar
  15. V. V. Roshchina, E. V. Melnikova, N. A. Spiridonov, and L. V. Kovaleva, “Azulenes, the blue pigments of pollen,” Doklady Biological Sciences, vol. 340, no. 1, pp. 93–96, 1995. View at Google Scholar
  16. V. V. Roshchina, E. V. Mel'nikova, and L. V. Kovaleva, “Autoflourescence in pollen-pistil system in Hippeastrum hybridum,” Doklady Akademii Nauk, vol. 349, no. 1, pp. 118–120, 1996. View at Google Scholar · View at Scopus
  17. V. V. Roshchina, E. V. Mel'nikova, and L. V. Kovaleva, “Changes in fluorescence during development of the male gametophyte,” Russian Journal of Plant Physiology, vol. 44, no. 1, pp. 36–44, 1997. View at Google Scholar · View at Scopus
  18. V. V. Roshchina, E. V. Melnikova, L. V. Mit'kovskaya, and V. N. Karnaukhov, “Microspectrofluorimetry for the study of intact plant secreting cells,” Zhurnal Obshchei Biologii, vol. 59, no. 5, pp. 531–554, 1998. View at Google Scholar · View at Scopus
  19. V. V. Roshchina and E. V. Melnikova, “Microspectrofluorimetry of intact secreting cells, with applications to the study of allelopathy,” in Principles and Practices in Plant Ecology: Allelochemical Interactions, Inderjit, K. M. M. Dakshini, and C. L. Foy, Eds., pp. 99–126, CRC Press, Boca Raton, Fla, USA, 1999. View at Google Scholar
  20. V. V. Roshchina, A. V. Yashina, and V. A. Yashin, “Cell communication in pollen allelopathy analyzed with laser-scanning confocal microscopy,” Allelopathy Journal, vol. 21, no. 2, pp. 219–226, 2008. View at Google Scholar
  21. V. V. Roshchina, A. V. Yashina, V. A. Yashin, and N. K. Prizova, “Models to study pollen allelopathy,” Allelopathy Journal, vol. 23, no. 1, pp. 3–24, 2009. View at Google Scholar · View at Scopus
  22. V. V. Roshchina, A. V. Yashina, V. A. Yashin, and M. V. Gol’tyaev, “Fluorescence of biologically active compounds in plant secretory cells,” in Research Methods in Plant Science, Vol. 2. Forestry and Agroforestry, S. S. Narwal, P. Pavlovic, and J. John, Eds., pp. 3–25, Studium Press, Houston, Tex, USA, 2011. View at Google Scholar
  23. V. V. Roshchina and E. V. Melnikova, “Microspectrofluorometery: a new technique to study pollen allelopathy,” Allelopathy Journal, vol. 3, no. 1, pp. 51–58, 1996. View at Google Scholar · View at Scopus
  24. V. V. Roshchina and E. V. Melnikova, “Chemosensory reactions at the interaction pollen-pistil,” Biology Bulletin, no. 6, pp. 678–685, 1998. View at Google Scholar
  25. A. Salih, A. S. Jones, D. Bass, and G. Cox, “Confocal imaging of exine as a tool for grass pollen analysis,” Grana, vol. 36, no. 4, pp. 215–224, 1997. View at Google Scholar · View at Scopus
  26. A. E. Fonseca, M. E. Westgate, and R. T. Doyle, “Application of fluorescence microscopy and image analysis for quantifying dynamics of maize pollen shed,” Crop Science, vol. 42, no. 6, pp. 2201–2206, 2002. View at Google Scholar · View at Scopus
  27. V. V. Roshchina and V. N. Karnaukhov, “Changes in pollen autofluorescence induced by ozone,” Biologia Plantarum, vol. 42, no. 2, pp. 273–278, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. V. V. Roshchina and E. V. Mel'nikova, “Pollen chemosensitivity to ozone and peroxides,” Russian Journal of Plant Physiology, vol. 48, no. 1, pp. 74–83, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. V. V. Roshchina and V. D. Roshchina, Ozone and Plant Cell, Kluwer Academic, Dordrecht, The Netherlands, 2003.
  30. K. Mitsumoto, K. Yabusaki, and H. Aoyagi, “Classification of pollen species using autofluorescence image analysis,” Journal of Bioscience and Bioengineering, vol. 107, no. 1, pp. 90–94, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Mitsumoto, K. Yabusaki, K. Kobayashi, and H. Aoyagi, “Development of a novel real-time pollen-sorting counter using species-specific pollen autofluorescence,” Aerobiologia, vol. 26, no. 2, pp. 99–111, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Aoyagi and C. U. Ugwu, “Fulerene fine particles adhere to pollen grains and affect their autofluorescence and germination,” Nanotechnology, Science and Applications, vol. 4, pp. 67–71, 2011. View at Publisher · View at Google Scholar
  33. A. Speranza, R. Crinelli, V. Scoccianti, and A. Geitmann, “Reactive oxygen species are involved in pollen tube initiation in kiwifruit,” Plant Biology, vol. 14, no. 1, pp. 64–76, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. A. A. Dobritsa, A. Geanconteri, J. Shrestha et al., “A large-scale genetic screen in Arabidopsis to identify genes involved in pollen exine production,” Plant Physiology, vol. 157, no. 2, pp. 947–970, 2011. View at Google Scholar
  35. A. J. Castro, J. D. Rejon, M. Fendri et al., “Taxonomical discrimination of pollen grains by using confocal laser scanning microscopy (CLSM) imaging of autofluorescence,” in Microscopy: Science, Technology, Application and Education, A. Mendez-Vilas and J. Diaz, Eds., pp. 607–613, Formatex, Badajoz, Spain, 2010. View at Google Scholar
  36. M. Suzuzi, M. Tonouchi, K. Muyarama, and K. Mitsumoto, “An analysis of high concentration of pollen at early morning in 2005 spring and a measurement of Japanese cedar and cypress pollen using autofluorescence characteristics,” Journal of Aerosol Research, vol. 20, no. 4, pp. 281–289, 2005. View at Google Scholar
  37. V. V. Roshchina, “Cellular models as biosensors,” in Cell Diagnostics: Images, Biophysical and Biochemical Processes in Allelopathy, V. V. Roshchina and S. S. Narwal, Eds., pp. 5–22, Science, Enfield, UK, 2007. View at Google Scholar
  38. V. V. Roshchina, “Luminescent cell analysis in allelopathy,” in Cell Diagnostics: Images, Biophysical and Biochemical Processes in Allelopathy, V. V. Roshchina and S. S. Narwal, Eds., pp. 103–115, Science, Enfield, UK, 2007. View at Google Scholar
  39. V. V. Roshchina, V. A. Yashin, A. V. Kononov, and A. V. Yashina, “Laser-scanning confocal microscopy (LSCM): study of plant secretory cell,” in Cell Diagnostics: Images, Biophysical and Biochemical Processes in Allelopathy, V. V. Roshchina and S. S. Narwal, Eds., pp. 93–102, Science, Enfield, UK, 2007. View at Google Scholar
  40. V. V. Roshchina and V. N. Karnaukhov, “The fluorescence analysis of medicinal drugs' interaction with unicellular biosensors,” Farmatsiya, vol. 7, no. 3, pp. 43–46, 2010. View at Google Scholar
  41. A. G. Valdecasas and A. Abad, “Morphological confocal microscopy in arthropods and the enhancement of autofluorescence after proteinase K extraction,” Microscopy and Microanalysis, vol. 17, no. 1, pp. 109–113, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. V. V. Roshchina, V. A. Yashin, and I. M. Vikhlyantsev, “Fluorescence of plant microspores as biosensors,” Biochemistry Supplemental Series A, vol. 6, no. 1, pp. 105–112, 2012. View at Publisher · View at Google Scholar
  43. W. Rühland and K. Wetzel, “Der Nachweis von Chloroplasten in den generativen Zellen von Pollenschläuchen,” Berirhte Der Deutarhen Botanischen Gesellschaft, vol. 42, pp. 3–14, 1924. View at Google Scholar
  44. F. Berger, “Das Verhalten der heufieber-erregenden Pollen in filtrien ultravioleten Licht,” Beiträge zur Biologie der Pflanzen, vol. 22, no. 1, pp. 1–12, 1934. View at Google Scholar
  45. F. Asbeck, “Fluorescezieren der Blutenstaub,” Naturwissenschaften, vol. 42, no. 5, p. 632, 1955. View at Google Scholar
  46. P. van Gijzel, “Autofluorescence and age of some fossil pollen and spores,” Proceedings of the Koninklijke Nederlandse Akademie Van Wetenschappen—Series B, vol. 64, no. 1, pp. 56–63, 1961. View at Google Scholar
  47. M. T. M. Willemse, “Morphological and fluorescence microscopical investigation on sporopollenin formation at Pinus sylvestris and Gasteria verrucosa,” in Sporopollenin. Proceeding Symposim at Geology Department, Imperial College, London, 1970. 23–25 September, J. Brooks, P. R. Grant, M. Muir, and P. R. van Gijzel, Eds., pp. 68–91, Academic Press, New York, NY, USA, 1971. View at Google Scholar
  48. D. J. O. ’Connor, D. Iacopino, D. A. Healy, D. O'Sullivan, and J. R. Sodeau, “The intrinsic fluorescence spectra of selected pollen and fungal spores,” Atmospheric Environment, vol. 45, no. 35, pp. 6451–6458, 2011. View at Publisher · View at Google Scholar
  49. Y. L. Pan, S. C. Hill, R. G. Pinnick, J. M. House, R. C. Flagan, and R. K. Chang, “Dual-excitation-wavelength fluorescence spectra and elastic scattering for differentiation of single airborne pollen and fungal particles,” Atmospheric Environment, vol. 45, no. 8, pp. 1555–1563, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. V. V. Roshchina and V. D. Roshchina, The Excretory Function of Higher Plants, Springer, Berlin, Germany, 1993.
  51. V. V. Roshchina, E. V. Melnikova, V. N. Karnaukhov, and B. N. Golovkin, “Application of microspectrofluorimetry in spectral analysis of plant secretory cells,” Biology Bulletin, no. 2, pp. 167–171, 1997. View at Google Scholar
  52. V. V. Roshchina and E. V. Melnikova, “Spectral analysis of intact secretory cells and excretions of plants,” Allelopathy Journal, vol. 2, no. 2, pp. 179–188, 1995. View at Google Scholar
  53. S. Lee, R. L. Brown, and W. Monroe, “Use of confocal laser scanning microscopy in systematics of insects with a comparison of fluorescence from different stains,” Systematic Entomology, vol. 34, no. 1, pp. 10–14, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. Z. Žižka and J. Gabriel, “Primary fluorescence (autofluorescence) of fruiting bodies of the wood-rotting fungus Fomes fomentarius,” Folia Microbiologica, vol. 51, no. 2, pp. 109–113, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. C. H. Wu and H. L. Warren, “Natural autofluorescence in fungi and its correlation with viability,” Mycologia, vol. 76, no. 6, pp. 1049–1058, 1984. View at Google Scholar
  56. C. H. Wu and H. L. Warren, “Induced autofluorescence in fungi, and its correlation with viability: potential application of fluorescence microscopy,” Phytopathlogy, vol. 74, no. 6, pp. 1353–1358, 1984. View at Google Scholar
  57. G. Doehlemann, K. van der Linde, D. Aßmann et al., “Pep1, a secreted effector protein of Ustilago maydis, is required for successful invasion of plant cells,” PLoS Pathogens, vol. 5, no. 2, Article ID e1000290, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. A. R. Hardham, “Confocal microscopy in plant-pathogen interactions,” in Plant Fungal Pathogens: Methods and Protocols, M. D. D. Bolton, P. H. J. Bart, and P. Thomma, Eds., vol. 835 of Methods in Molecular Biology, pp. 295–309, Springer, Berlin, Germany, 2012. View at Google Scholar
  59. F. Perrine-Walker, P. Doumas, M. Lucas et al., “Auxin carriers localization drives auxin accumulation in plant cells infected by Frankia in Casuarina glauca actinorhizal nodules,” Plant Physiology, vol. 154, no. 3, pp. 1372–1380, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. F. Gandía-Herrero, F. García-Carmona, and J. Escribano, “Botany: floral fluorescence effect,” Nature, vol. 437, no. 7057, p. 334, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. P. Hutzler, R. Fischbach, W. Heller et al., “Tissue localization of phenolic compounds in plants by confocal laser scanning microscopy,” Journal of Experimental Botany, vol. 49, no. 323, pp. 953–965, 1998. View at Google Scholar · View at Scopus
  62. G. Agati, Z. G. Cerovic, P. Pinelli, and M. Tattini, “Light-induced accumulation of ortho-dihydroxylated flavonoids as non-destructively monitored by chlorophyll fluorescence excitation techniques,” Environmental and Experimental Botany, vol. 73, pp. 3–9, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. G. Conejero, P. Talamond, and J. L. Verdeil, “A new approach to visualize secondary metabolites in plants. Histocytology and plant cell imaging control platform,” La plate-forme regionale d'imagerie “Montpellier Rio Imaging” (MRI) organise une journee “Imagerie”, Lafayette, La, USA, Octobre 2009, http://phiv.cirad.fr/download/poster.pdf.
  64. A. Iriel and M. G. Lagorio, “Implications of reflectance and fluorescence of Rhododendron indicum flowers in biosignaling,” Photochemical and Photobiological Sciences, vol. 9, no. 3, pp. 342–348, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. A. Iriel and M. G. Lagorio, “Is the flower fluorescence relevant in biocommunication?” Naturwissenschaften, vol. 97, no. 10, pp. 915–924, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. F. Gandía-Herrero, J. Escribano, and F. García-Carmona, “Betaxanthins as pigments responsible for visible fluorescence in flowers,” Planta, vol. 222, no. 4, pp. 586–593, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. F. Gandía-Herrero, M. Jiménez-Atiénzar, J. Cabanes, J. Escribano, and F. García-Carmona, “Fluorescence detection of tyrosinase activity on dopamine-betaxanthin purified from Portulaca oleracea (common purslane) flowers,” Journal of Agricultural and Food Chemistry, vol. 57, no. 6, pp. 2523–2528, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. G. Agati, M. L. Traversi, and Z. G. Cerovic, “Chlorophyll fluorescence imaging for the noninvasive assessment of anthocyanins in whole grape (Vitis Vinifera L.) bunches,” Photochemistry and Photobiology, vol. 84, no. 6, pp. 1431–1434, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. D. L. Betemps, J. C. Fachinello, S. P. Galarca et al., “Non-destructive evaluation of ripening and quality traits in apples using a multiparametric fluorescence sensor,” Journal of the Science of Food and Agriculture, vol. 92, no. 9, pp. 1855–1864, 2012. View at Publisher · View at Google Scholar
  70. C. Gomez, G. Conejero, L. Torregrosa, V. Cheynier, N. Terrier, and A. Ageorges, “In vivo grapevine anthocyanin transport involves vesicle-mediated trafficking and the contribution of anthoMATE transporters and GST,” Plant Journal, vol. 67, no. 6, pp. 960–970, 2011. View at Publisher · View at Google Scholar · View at Scopus
  71. V. V. Roshchina, “Plant microspores as biosensors,” Trends in Modern Biology, vol. 126, no. 3, pp. 262–274, 2006. View at Google Scholar
  72. V. V. Roshchina, E. V. Mel'nikova, V. A. Yashin, and V. N. Karnaukhov, “Autofluorescence of intact Equisetum arvense L. spores during their development,” Biofizika, vol. 47, no. 2, pp. 318–324, 2002. View at Google Scholar · View at Scopus
  73. V. V. Roshchina, V. A. Yashin, and A. V. Kononov, “Autofluorescence of developing plant vegetative microspores studied by confocal microscopy and microspectrofluorimetry,” Journal of Fluorescence, vol. 14, no. 6, pp. 745–750, 2004. View at Publisher · View at Google Scholar · View at Scopus
  74. V. V. Roshchina, Neurotransmitters in Plant Life, Science, Enfield, UK, 2001.
  75. V. V. Roshchina, “Evolutionary considerations of neurotransmitters in microbial, plant and animal cells,” in Microbial Endocrinology: Interkingdom Signaling in Infectious Disease and Health, M. Lyte and P. P. E. Freestone, Eds., pp. 17–52, Springer, Berlin, Germany, 2010. View at Google Scholar
  76. R. N. Ames, E. R. Ingham, and C. P. P. Reid, “Ultraviolet-induced autofluorescence of a mycorrhizal root infestions and alternative to clearing and staining methods for infections,” Canadian Journal of Microbiology, vol. 28, pp. 351–355, 1982. View at Google Scholar
  77. B. Dreyer, A. Morte, M. Pérez-Gilabert, and M. Honrubia, “Autofluorescence detection of arbuscular mycorrhizal fungal structures in palm roots: an underestimated experimental method,” Mycological Research, vol. 110, no. 8, pp. 887–897, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. B. Dreyer, “Use of the autofluorescence properties of AM fungi for AM assessment and handling,” Soil Biology, vol. 18, pp. 123–140, 2009. View at Publisher · View at Google Scholar