Table of Contents
International Journal of Spectroscopy
Volume 2012, Article ID 234949, 14 pages
http://dx.doi.org/10.1155/2012/234949
Research Article

On Applicability of a Miniaturised Laser Ablation Time of Flight Mass Spectrometer for Trace Elements Measurements

Space Research & Planetary Sciences, Institute of Physics, University Bern, Sidlerstrasse 5, 3012 Bern, Switzerland

Received 13 July 2011; Accepted 19 October 2011

Academic Editor: Michael Balogh

Copyright © 2012 Marek Tulej et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. S. Becker, Inorganic Mass Spectrometry, John Wiley & Sons, 2007.
  2. K. E. Jarvis and J. G. Williams, “Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS): a rapid technique for the direct, quantitative determination of major, trace and rare-earth elements in geological samples,” Chemical Geology, vol. 106, no. 3-4, pp. 251–262, 1993. View at Google Scholar · View at Scopus
  3. V. Hoffmann, M. Kasik, P. K. Robinson, and C. Venzago, “Glow discharge mass spectrometry,” Analytical and Bioanalytical Chemistry, vol. 381, no. 1, pp. 173–188, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. C. J. Koester and A. Moulik, “Trends in environmental analysis,” Analytical Chemistry, vol. 77, no. 12, pp. 3737–3754, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. R. Lobinski, C. Moulin, and R. Ortega, “Imaging and speciation of trace elements in biological environment,” Biochimie, vol. 88, no. 11, pp. 1591–1604, 2006. View at Publisher · View at Google Scholar · View at PubMed
  6. P. Wurz, D. Abplanalp, M. Tulej et al., “In situ mass spectrometric analysis in planetary science,” Solar System Research. In press.
  7. R. Rieder, T. Economou, H. Wänke et al., “The chemical composition of martian soil and rocks returned by the mobile alpha proton x-ray spectrometer: preliminary results from the x-ray mode,” Science, vol. 278, no. 5344, pp. 1771–1774, 1997. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Y. McSween Jr., R. L. McNutt Jr., and T. H. Prettyman, “Spacecraft instrument technology and cosmochemistry,” The Proceedings of the National Academy of Sciences of the United States of America, pp. 1–6, 2011. View at Publisher · View at Google Scholar · View at PubMed
  9. L. A. McDonnell and R. M.A. Heeren, “Imaging mass spectrometry,” Mass Spectrometry Reviews, vol. 26, no. 4, pp. 606–643, 2007. View at Publisher · View at Google Scholar · View at PubMed
  10. R. Huang, B. Zhang, D. Zou, W. Hang, J. He, and B. Huang, “Elemental imaging via laser ionization orthogonal time-of-flight mass spectrometry,” Analytical Chemistry, vol. 83, no. 3, pp. 1102–1107, 2011. View at Publisher · View at Google Scholar · View at PubMed
  11. J. S. Becker and H. J. Dietze, “State-of-the-art in inorganic mass spectrometry for analysis of high-purity materials,” International Journal of Mass Spectrometry, vol. 228, no. 2-3, pp. 127–150, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Matus, H. M. Seufert, and K. P. Jochum, “Microanalysis of geological samples by laser plasma ionization mass spectrometry (LIMS),” Fresenius' Journal of Analytical Chemistry, vol. 350, no. 4-5, pp. 330–337, 1994. View at Publisher · View at Google Scholar · View at Scopus
  13. U. Rohner, J. A. Whitby, and P. Wurz, “A miniature laser ablation time-of-flight mass spectrometer for in situ planetary exploration,” Measurement Science and Technology, vol. 14, no. 12, pp. 2159–2164, 2003. View at Publisher · View at Google Scholar
  14. U. Rohner, J. A. Whitby, P. Wurz, and S. Barabash, “Highly miniaturized laser ablation time-of-flight mass spectrometer for a planetary rover,” Review of Scientific Instruments, vol. 75, no. 5, pp. 1314–1322, 2004. View at Publisher · View at Google Scholar
  15. H. Balsiger, K. Altwegg, P. Bochsler et al., “Rosina—Rosetta orbiter spectrometer for ion and neutral analysis,” Space Science Reviews, vol. 128, no. 1–4, pp. 745–801, 2007. View at Publisher · View at Google Scholar
  16. D. Abplanalp, P. Wurz, L. Huber et al., “A neutral gas mass spectrometer to measure the chemical composition of the stratosphere,” Advances in Space Research, vol. 44, no. 7, pp. 870–878, 2009. View at Publisher · View at Google Scholar
  17. W. B. Brinckerhoff, G. G. Managadze, R. W. McEntire, A. F. Cheng, and W. J. Green, “Laser time-of-flight mass spectrometry for space,” Review of Scientific Instruments, vol. 71, no. 2 I, pp. 536–545, 2000. View at Google Scholar · View at Scopus
  18. G. G. Managadze and I. Y. Shutyaev, Chemical Analysis, vol. 124, John Wiley & Sons, New York, NY, USA, 1993.
  19. L. M. Zelenyi and A. V. Zakharov, “Phobos-grunt project: devices for scientific studies,” Solar System Research, vol. 44, no. 5, pp. 359–361, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. G. G. Managadze, P. Wurz, R. Z. Sagdeev et al., “Study of the main geochemical characteristics of phobos' regolith using laser time-of-flight mass spectrometry,” Solar System Research, vol. 44, no. 5, pp. 376–384, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Lin, Q. Yu, W. Hang, and B. Huang, “Progress of laser ionization mass spectrometry for elemental analysis—a review of the past decade,” Spectrochimica Acta B, vol. 65, no. 11, pp. 871–883, 2010. View at Publisher · View at Google Scholar
  22. Q. Yu, L. Chen, R. Huang et al., “Laser ionization time-of-flight mass spectrometry for direct elemental analysis,” Trends in Analytical Chemistry, vol. 28, no. 10, pp. 1174–1185, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. R. E. Honig and J. R. Woolston, “Laser-induced emission of electrons, ions, and neutral atoms from solid surfaces,” Applied Physics Letters, vol. 2, no. 7, pp. 138–139, 1963. View at Publisher · View at Google Scholar
  24. N. C. Fenner, “Ion energies in the plasma produced by a high power laser,” Physics Letters, vol. 22, no. 4, pp. 421–422, 1966. View at Google Scholar · View at Scopus
  25. M. Southon, M. Witt, A. Harris, E. Wallach, and J. Myatt, “Laser-microprobe mass-analysis of surface layers and bulk solids,” Vacuum, vol. 34, no. 10-11, pp. 903–909, 1984. View at Google Scholar · View at Scopus
  26. J. He, R. Huang, Q. Yu, Y. Lin, W. Hang, and B. Huang, “A small high-irradiance laser ionization time-of-flight mass spectrometer,” Journal of Mass Spectrometry, vol. 44, no. 5, pp. 780–785, 2009. View at Publisher · View at Google Scholar · View at PubMed
  27. M. Tulej, M. Iakovleva, I. Leya, and P. Wurz, “A miniature mass analyser for in-situ elemental analysis of planetary material-performance studies,” Analytical and Bioanalytical Chemistry, vol. 399, no. 6, pp. 2185–2200, 2011. View at Publisher · View at Google Scholar · View at PubMed
  28. S. Scherer, K. Altwegg, H. Balsiger et al., “A novel principle for an ion mirror design in time-of-flight mass spectrometry,” International Journal of Mass Spectrometry, vol. 251, no. 1, pp. 73–81, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. X. Wang, S. Amoruso, A. Tortora et al., “Analysis of charged fragments emitted during excimer laser ablation of YNi2B2C borocarbide targets by time-of-flight mass spectrometry,” Applied Surface Science, vol. 186, no. 1–4, pp. 303–308, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. L. Torrisi, “Fractional ionization in plasmas produced by pulsed laser ablation,” Radiation Effects and Defects in Solids, vol. 157, no. 3, pp. 347–356, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. L. Torrisi, G. Ciavola, S. Gammino et al., “Metallic etching by high power Nd:yttrium-aluminum-garnet pulsed laser irradiation,” Review of Scientific Instruments, vol. 71, no. 11, pp. 4330–4334, 2000. View at Google Scholar
  32. A. Riedo, P. Wahlström, J. A. Scheer, P. Wurz, and M. Tulej, “Effect of long duration UV irradiation on diamondlike carbon surfaces in the presence of a hydrocarbon gaseous atmosphere,” Journal of Applied Physics, vol. 108, no. 114915, 2010. View at Publisher · View at Google Scholar
  33. S. Amoruso, A. Amodeo, V. Berardi, R. Bruzzese, N. Spinelli, and R. Velotta, “Laser produced plasmas in high fluence ablation of metallic surfaces probed by time-of-flight mass spectrometry,” Applied Surface Science, vol. 96–98, pp. 175–180, 1996. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Álvarez-Ruiz, M. López-Arias, R. De Nalda, M. Martín, A. Arregui, and L. Bañares, “Generation of CdS clusters using laser ablation: the role of wavelength and fluence,” Applied Physics A, vol. 95, no. 3, pp. 681–687, 2009. View at Publisher · View at Google Scholar
  35. V. Ignatova, L. Van Vaeck, R. Gijbels, and F. Adams, “Molecular speciation of inorganic mixtures by Fourier transform laser microprobe mass spectrometry,” International Journal of Mass Spectrometry, vol. 225, no. 3, pp. 213–224, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. B. Yan, L. Li, Q. Yu, W. Hang, J. He, and B. Huang, “High irradiance laser ionization mass spectrometry for direct speciation of iron oxides,” Journal of the American Society for Mass Spectrometry, vol. 21, no. 7, pp. 1227–1234, 2010. View at Publisher · View at Google Scholar · View at PubMed
  37. R. Torres and M. Martin, “Laser ablation and time-of-flight mass-spectrometric study of SiO,” Applied Surface Science, vol. 193, no. 1–4, pp. 149–155, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. R. Hergenröder, O. Samek, and V. Hommes, “Femtosecond laser ablation elemental mass spectrometry,” Mass Spectrometry Reviews, vol. 25, no. 4, pp. 551–572, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. R. K. Boyd, C. Basic, and R. A. Bethem, Trace Quantitative Analysis by Mass Spectrometry, John Wiley & Sons, 2008.
  40. H. Y. McSween Jr. and G. R. Huss, Cosmochemistry, Cambridge University Press, Cambridge, UK, 2010.
  41. F. Aubriet, C. Poleunis, J. F. Muller, and P. Bertrand, “Laser ablation and secondary ion mass spectrometry of inorganic transition-metal compounds. Part I: comparison between static ToF-SIMS and LA-FTICRMS,” Journal of Mass Spectrometry, vol. 41, no. 4, pp. 527–542, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. L. Van Vaeck, A. Adriaens, and F. Adams, “Microscopical speciation analysis with laser microprobe mass spectrometry and static secondary ion mass spectrometry,” Spectrochimica Acta B, vol. 53, no. 2, pp. 367–378, 1998. View at Publisher · View at Google Scholar · View at Scopus
  43. B. Maunit, A. Hachimi, P. Manuelli, P. J. Calba, and J. F. Muller, “Formation of iron oxides clusters induced by resonant laser ablation/ionization,” International Journal of Mass Spectrometry and Ion Processes, vol. 156, no. 3, pp. 173–187, 1996. View at Google Scholar · View at Scopus
  44. A. T. De Ville D'Avray, E. E. Carpenter, C. J. O'Connor, and R. B. Cole, “Characterization of ferrite nanoparticles by laser desorption/ionization mass spectrometry,” European Journal of Mass Spectrometry, vol. 4, no. 6, pp. 441–449, 1998. View at Google Scholar · View at Scopus
  45. F. Aubriet and J. F. Muller, “About the atypical behavior of CrO3, MoO3, and WO3 during their UV laser ablation/ionization,” Journal of Physical Chemistry A, vol. 106, no. 25, pp. 6053–6059, 2002. View at Publisher · View at Google Scholar · View at Scopus