Table of Contents
International Journal of Spectroscopy
Volume 2012, Article ID 350684, 7 pages
http://dx.doi.org/10.1155/2012/350684
Review Article

The Nanofabrication and Application of Substrates for Surface-Enhanced Raman Scattering

1Advanced Materials Laboratory, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
2Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China

Received 8 September 2012; Revised 29 November 2012; Accepted 29 November 2012

Academic Editor: Rolf W. Berg

Copyright © 2012 Xian Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chemical Physics Letters, vol. 26, no. 2, pp. 163–166, 1974. View at Google Scholar · View at Scopus
  2. M. Moskovits, “Surface-enhanced spectroscopy,” Reviews of Modern Physics, vol. 57, no. 3, pp. 783–826, 1985. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Kudelski, “Analytical applications of Raman spectroscopy,” Talanta, vol. 76, no. 1, pp. 1–8, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” Journal of Electroanalytical Chemistry, vol. 84, no. 1, pp. 1–20, 1977. View at Google Scholar · View at Scopus
  5. R. K. Chang, “Surface enhanced Raman-scattering at electrodes—a status-report,” Physical Chemistry Chemical Physics, vol. 91, no. 4, pp. 296–305, 1987. View at Google Scholar · View at Scopus
  6. R. L. Garrell, “Surface-enhanced Raman spectroscopy,” Analytical Chemistry, vol. 61, no. 6, pp. 401A–411A, 1989. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Moskovits, “The dependence of the metal-molecule vibrational frequency on the mass of the adsorbate and its relevance to the role of adatoms in surface-enhanced Raman scattering,” Chemical Physics Letters, vol. 98, no. 5, pp. 498–502, 1983. View at Google Scholar · View at Scopus
  8. A. G. Brolo, M. Odziemkowski, and D. E. Irish, “An in situ Raman spectroscopic study of electrochemical processes in mercury-solution interphases,” Journal of Raman Spectroscopy, vol. 29, no. 8, pp. 713–719, 1998. View at Google Scholar · View at Scopus
  9. B. H. Loo, “Surface enhanced Raman scattering from pyridine adsorbed on cadmium,” The Journal of Chemical Physics, vol. 75, no. 12, pp. 5955–5956, 1981. View at Google Scholar · View at Scopus
  10. T. López-Ríos and Y. Gao, “Modification by pd adsorbates of the surface enhanced Raman scattering at Ag surfaces,” Surface Science, vol. 205, no. 3, pp. 569–590, 1988. View at Google Scholar · View at Scopus
  11. Y. Gao and T. Lopez-Rios, “Raman scattering of pyridine coadsorbed with Al on quenched Ag films: evidence of Raman enhancement in the pores,” Surface Science, vol. 198, no. 3, pp. 509–523, 1988. View at Google Scholar · View at Scopus
  12. M. Moskovits, “Surface-enhanced spectroscopy,” Reviews of Modern Physics, vol. 57, no. 3, pp. 783–826, 1985. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Moskovits, “Surface selection rules,” Journal of Chemical Physics, vol. 77, no. 9, pp. 4408–4416, 1982. View at Google Scholar · View at Scopus
  14. M. Moskovits, L. L. Tay, J. Yang, and T. Haslett, “SERS and the single molecule,” in Topics in Applied Physics, pp. 215–226, Springer, Berlin, Germany, 2002. View at Google Scholar
  15. A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, “Surface-enhanced Raman scattering,” Journal of Physics, vol. 4, no. 5, pp. 1143–1212, 1992. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Kerker, “Electromagnetic model for surface-enhanced Raman scattering (SERS) on metal colloids,” Accounts of Chemical Research, vol. 17, no. 8, pp. 271–277, 1984. View at Google Scholar · View at Scopus
  17. H. Metiu and P. Das, “The electromagnetic theory of surface enhanced spectroscopy,” Annual Review of Physical Chemistry, vol. 35, pp. 507–536, 1984. View at Google Scholar
  18. G. C. Schatz, “Theoretical studies of surface enhanced Raman scattering,” Accounts of Chemical Research, vol. 17, no. 10, pp. 370–376, 1984. View at Google Scholar · View at Scopus
  19. J. R. Lombardi, R. L. Birke, T. H. Lu, and J. Xu, “Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg-Teller contributions,” Journal of Chemical Physics, vol. 84, no. 8, pp. 4174–4180, 1986. View at Google Scholar · View at Scopus
  20. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science, vol. 275, no. 5303, pp. 1102–1106, 1997. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Kneipp, Y. Wang, H. Kneipp et al., “Single molecule detection using surface-enhanced Raman scattering (SERS),” Physical Review Letters, vol. 78, no. 9, pp. 1667–1670, 1997. View at Google Scholar · View at Scopus
  22. X. M. Qian and S. M. Nie, “Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications,” Chemical Society Reviews, vol. 37, no. 5, pp. 912–920, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chemical Reviews, vol. 99, no. 10, pp. 2957–2976, 1999. View at Google Scholar · View at Scopus
  24. T. E. Furtak, G. Trott, and B. H. Loo, “Enhanced light scattering from the metal/solution interface: chemical origins,” Surface Science, vol. 101, no. 1–3, pp. 374–380, 1980. View at Google Scholar · View at Scopus
  25. I. Pockrand and A. Otto, “Surface enhanced Raman scattering (SERS): annealing the silver substrate,” Solid State Communications, vol. 38, no. 12, pp. 1159–1163, 1981. View at Google Scholar · View at Scopus
  26. T. Watanabe, N. Yanagihara, K. Honda, B. Pettinger, and L. Moerl, “Effects of underpotentially deposited TI and Pb submonolayers on the surface-enhanced Raman scattering (SERS) from pyridine at Ag electrodes,” Chemical Physics Letters, vol. 96, no. 6, pp. 649–655, 1983. View at Google Scholar · View at Scopus
  27. D. P. Tsai, J. Kovacs, Z. H. Wang et al., “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Physical Review Letters, vol. 72, no. 26, pp. 4149–4152, 1994. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Zhang, T. L. Haslett, C. Douketis, and M. Moskovits, “Mode localization in self-affine fractal interfaces observed by near-field microscopy,” Physical Review B, vol. 57, no. 24, pp. 15513–15518, 1998. View at Google Scholar · View at Scopus
  29. C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” Journal of Physical Chemistry B, vol. 105, no. 24, pp. 5599–5611, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. M. J. Weaver, “Surface-enhanced Raman spectroscopy as a versatile in situ probe of chemisorption in catalytic electrochemical and gaseous environments,” Journal of Raman Spectroscopy, vol. 33, no. 5, pp. 309–317, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. G. T. Duan, W. P. Cai, Y. Y. Luo, Y. Li, and Y. Lei, “Hierarchical surface rough ordered Au particle arrays and their surface enhanced Raman scattering,” Applied Physics Letters, vol. 89, no. 18, Article ID 181918, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. Z. L. Huang, G. W. Meng, Q. Huang, Y. J. Yang, C. H. Zhu, and C. L. Tang, “Improved SERS performance from Au nanopillar arrays by abridging the pillar tip spacing by Ag sputtering,” Advanced Materials, vol. 22, no. 37, pp. 4136–4139, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Malac, R. F. Egerton, M. J. Brett, and B. Dick, “Fabrication of submicrometer regular arrays of pillars and helices,” Journal of Vacuum Science and Technology B, vol. 17, no. 6, pp. 2671–2674, 1999. View at Google Scholar · View at Scopus
  34. B. Dick, M. J. Brett, and T. Smy, “Controlled growth of periodic pillars by glancing angle deposition,” Journal of Vacuum Science and Technology B, vol. 21, no. 1, pp. 23–28, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. Q. Zhou, Z. C. Li, Y. Yang, and Z. J. Zhang, “Arrays of aligned, single crystalline silver nanorods for trace amount detection,” Journal of Physics D, vol. 41, no. 15, Article ID 152007, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. Q. Zhou, Y. He, J. Abell, Z. Zhang, and Y. Zhao, “Optical properties and surface enhanced raman scattering of L-shaped silver nanorod arrays,” Journal of Physical Chemistry C, vol. 115, no. 29, pp. 14131–14140, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. Q. Zhou, Y. J. Liu, Y. P. He, Z. J. Zhang, and Y. P. Zhao, “The effect of underlayer thin films on the surface-enhanced Raman scattering response of Ag nanorod substrates,” Applied Physics Letters, vol. 97, no. 12, Article ID 121902, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. Z. Q. Tian, B. Ren, and D. Y. Wu, “Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures,” Journal of Physical Chemistry B, vol. 106, no. 37, pp. 9463–9483, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. X. Zhang, Q. Zhou, J. Ni, Z. C. Li, and Z. J. Zhang, “Surface-enhanced Raman scattering from a hexagonal lattice of micro-patterns of vertically aligned Ag nanorods,” Physica E, vol. 44, no. 2, pp. 460–463, 2011. View at Google Scholar
  40. Y. Z. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies,” ACS Nano, vol. 4, no. 5, pp. 2804–2810, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. L. M. Tong, T. Zhu, and Z. F. Liu, “Approaching the electromagnetic mechanism of surface-enhanced Raman scattering: from self-assembled arrays to individual gold nanoparticles,” Chemical Society Reviews, vol. 40, no. 3, pp. 1296–1304, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. L. Gunnarsson, E. J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. Käll, “Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering,” Applied Physics Letters, vol. 78, no. 6, pp. 802–804, 2001. View at Publisher · View at Google Scholar · View at Scopus
  43. L. A. Dick, A. J. Haes, and R. P. Van Duyne, “Distance and orientation dependence of heterogeneous electron transfer: a surface-enhanced resonance Raman scattering study of cytochrome c bound to carboxylic acid terminated alkanethiols adsorbed on silver electrodes,” Journal of Physical Chemistry B, vol. 104, no. 49, pp. 11752–11762, 2000. View at Google Scholar · View at Scopus
  44. L. A. Dick, A. D. McFarland, C. L. Haynes, and R. P. Van Duyne, “Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): improvements in surface nanostructure stability and suppression of irreversible loss,” Journal of Physical Chemistry B, vol. 106, no. 4, pp. 853–860, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Litorja, C. L. Haynes, A. J. Haes, T. R. Jensen, and R. P. Van Duyne, “Surface-enhanced Raman scattering detected temperature programmed desorption: optical properties, nanostructure, and stability of silver film over SiO2 nanosphere surfaces,” Journal of Physical Chemistry B, vol. 105, no. 29, pp. 6907–6915, 2001. View at Publisher · View at Google Scholar · View at Scopus
  46. J. A. Dieringer, A. D. McFarland, N. C. Shah et al., “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discussions, vol. 132, pp. 9–26, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. C. R. Yonzon, C. L. Haynes, X. Y. Zhang, J. T. Walsh, and R. P. Van Duyne, “A glucose biosensor based on surface-enhanced Raman scattering: improved partition layer, temporal stability, reversibility, and resistance to serum protein interference,” Analytical Chemistry, vol. 76, no. 1, pp. 78–85, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Tao, F. Kim, C. Hess et al., “Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Letters, vol. 3, no. 9, pp. 1229–1233, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. G. Ross, “The public health implications of polychlorinated biphenyls (PCBs) in the environment,” Ecotoxicology and Environmental Safety, vol. 59, no. 3, pp. 275–291, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. Q. Zhou, Y. Yang, J. Ni, Z. C. Li, and Z. J. Zhang, “Rapid detection of 2, 3, 3′, 4, 4′-pentachlorinated biphenyls by silver nanorods-enhanced Raman spectroscopy,” Physica E, vol. 42, no. 5, pp. 1717–1720, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. Q. Zhou, X. Zhang, Y. Huang, Z. C. Li, and Z. J. Zhang, “Rapid detection of polychlorinated biphenyls at trace levels in real environmental samples by surface-enhanced Raman scattering,” Sensors, vol. 11, no. 11, pp. 10851–10858, 2011. View at Google Scholar
  52. Q. Zhou, Y. Yang, J. E. Ni, Z. C. Li, and Z. J. Zhang, “Rapid recognition of isomers of monochlorobiphenyls at trace levels by surface-enhanced Raman scattering using Ag nanorods as a substrate,” Nano Research, vol. 3, no. 6, pp. 423–428, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. X. Zhang, Q. Zhou, Y. Huang, Z. C. Li, and Z. J. Zhang, “Contrastive analysis of the Raman spectra of polychlorinated benzene: hexachlorobenzene and benzene,” Sensors, vol. 11, no. 12, pp. 11510–11515, 2011. View at Google Scholar
  54. Y. Cao, R. C. Jin, and C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science, vol. 297, no. 5586, pp. 1536–1540, 2002. View at Publisher · View at Google Scholar · View at Scopus