Table of Contents Author Guidelines Submit a Manuscript
International Journal of Spectroscopy
Volume 2012 (2012), Article ID 472031, 10 pages
http://dx.doi.org/10.1155/2012/472031
Research Article

Combination of LC-MS2 and GC-MS as a Tool to Differentiate Oxidative Metabolites of Zearalenone with Different Chemical Structures

1Institute of Applied Biosciences, Chair of Food Chemistry, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
2Department of General-, Visceral- and Transplantation Surgery, Charité University, Augustenburger Platz 1, 13353 Berlin, Germany

Received 25 October 2011; Accepted 20 February 2012

Academic Editor: Hakan Arslan

Copyright © 2012 Andreas A. Hildebrand et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. EFSA and European Food Safety Authority, “Scientific opinion on the risks for public health related to the presence of zearalenone in food,” EFSA Journal, vol. 9, no. 6, p. 2197, 2011. View at Publisher · View at Google Scholar
  2. K. Gromadska, A. Waskiewicz, J. Chelkowski, and P. Golinski, “Zearalenone and its metabolites: occurrence, detection, toxicity and guidelines,” World Mycotoxin Journal, vol. 1, pp. 209–220, 2008. View at Publisher · View at Google Scholar
  3. C. M. Maragos, “Zearalenone occurrence and human exposure,” World Mycotoxin Journal, vol. 3, no. 4, pp. 369–383, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Metzler, E. Pfeiffer, and A. A. Hildebrand, “Zearalenone and its metabolites as endocrine disrupting chemicals,” World Mycotoxin Journal, vol. 3, no. 4, pp. 385–401, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Pfeiffer, A. A. Hildebrand, C. Becker et al., “Identification of an aliphatic epoxide and the corresponding dihydrodiol as novel congeners of zearalenone in cultures of Fusarium graminearum,” Journal of agricultural and food chemistry, vol. 58, no. 22, pp. 12055–12062, 2010. View at Google Scholar
  6. M. Metzler, “Proposal for a uniform designation of zearalenone and its metabolites,” Mycotoxin Research, vol. 27, no. 1, pp. 1–3, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Pfeiffer, A. Heyting, and M. Metzler, “Novel oxidative metabolites of the mycoestrogen zearalenone in vitro,” Molecular Nutrition and Food Research, vol. 51, no. 7, pp. 867–871, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. E. Pfeiffer, A. Hildebrand, G. Damm et al., “Aromatic hydroxylation is a major metabolic pathway of the mycotoxin zearalenone in vitro,” Molecular Nutrition and Food Research, vol. 53, no. 9, pp. 1123–1133, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. A. A. Hildebrand, E. Pfeiffer, A. Rapp, and M. Metzler, “Hydroxylation of the mycotoxin zearalenone at aliphatic positions: novel mammalian metabolites,” Mycotoxin Research, vol. 28, no. 1, pp. 1–8, 2012. View at Publisher · View at Google Scholar
  10. J. Reinen, L. L. Kalma, S. Begheijn, F. Heus, J. N. M. Commandeur, and N. P. E. Vermeulen, “Application of cytochrome P450 BM3 mutants as biocatalysts for the profiling of estrogen receptor binding metabolites of the mycotoxin zearalenone,” Xenobiotica, vol. 41, no. 1, pp. 59–70, 2011. View at Publisher · View at Google Scholar · View at Scopus