Table of Contents Author Guidelines Submit a Manuscript
International Journal of Spectroscopy
Volume 2012 (2012), Article ID 716527, 7 pages
http://dx.doi.org/10.1155/2012/716527
Research Article

Highly Sensitive Filter Paper Substrate for SERS Trace Explosives Detection

Department of Chemistry, ALERT-DHS Center of Excellence, Center for Chemical Sensors Development, University of Puerto Rico at Mayagüez, P.O. Box 9000, Mayagüez, PR 00681-9000, USA

Received 17 March 2012; Accepted 4 September 2012

Academic Editor: Keith Carron

Copyright © 2012 Pedro M. Fierro-Mercado and Samuel P. Hernández-Rivera. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. O. A. Sadik, A. K. Wanekaya, and S. Andreescu, “Advances in analytical technologies for environmental protection and public safety,” Journal of Environmental Monitoring, vol. 6, no. 6, pp. 513–522, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. R. S. Das and Y. K. Agrawal, “Raman spectroscopy: recent advancements, techniques and applications,” Vibrational Spectroscopy, vol. 57, no. 2, pp. 163–176, 2011. View at Google Scholar
  3. E. L. Izake, “Forensic and homeland security applications of modern portable Raman spectroscopy,” Forensic Science International, vol. 202, no. 1–3, pp. 1–8, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. J. R. Baena and B. Lendl, “Raman spectroscopy in chemical bioanalysis,” Current Opinion in Chemical Biology, vol. 8, no. 5, pp. 534–539, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Jehlička, P. Vítek, H. G. M. Edwards, M. Heagraves, and T. Čapoun, “Application of portable Raman instruments for fast and non-destructive detection of minerals on outcrops,” Spectrochimica Acta A, vol. 73, no. 3, pp. 410–419, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chemical Physics Letters, vol. 26, no. 2, pp. 163–166, 1974. View at Google Scholar · View at Scopus
  7. M. E. Hankus, H. Li, G. J. Gibson, and B. M. Cullum, “Surface-enhanced Raman scattering-based nanoprobe for high-resolution, non-scanning chemical imaging,” Analytical Chemistry, vol. 78, no. 21, pp. 7535–7546, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Efrima and L. Zeiri, “Understanding SERS of bacteria,” Journal of Raman Spectroscopy, vol. 40, no. 3, pp. 277–288, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. R. M. Jarvis and R. Goodacre, “Characterisation and identification of bacteria using SERS,” Chemical Society Reviews, vol. 37, no. 5, pp. 931–936, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. R. A. Tripp, R. A. Dluhy, and Y. Zhao, “Novel nanostructures for SERS biosensing,” Nano Today, vol. 3, no. 3-4, pp. 31–37, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Guicheteau, L. Argue, D. Emge, A. Hyre, M. Jacobson, and S. Christesen, “Bacillus spore classification via surface-enhanced Raman spectroscopy and principal component analysis,” Applied Spectroscopy, vol. 62, no. 3, pp. 267–272, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Botti, L. Cantarini, and A. Palucci, “Surface-enhanced Raman spectroscopy for trace-level detection of explosives,” Journal of Raman Spectroscopy, vol. 41, no. 8, pp. 866–869, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. N. A. Hatab, G. Eres, P. B. Hatzinger, and B. Gu, “Detection and analysis of cyclotrimethylenetrinitramine (RDX) in environmental samples by surface-enhanced Raman spectroscopy,” Journal of Raman Spectroscopy, vol. 41, no. 10, pp. 1131–1136, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. W. E. Doering and S. Nie, “Single-molecule and single-nanoparticle SERS: examining the roles of surface active sites and chemical enhancement,” Journal of Physical Chemistry B, vol. 106, no. 2, pp. 311–317, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Fan and A. G. Brolo, “Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit,” Physical Chemistry Chemical Physics, vol. 11, no. 34, pp. 7381–7389, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” Journal of Physical Chemistry, vol. 86, no. 17, pp. 3391–3395, 1982. View at Google Scholar · View at Scopus
  17. M. A. De Jesús, K. S. Giesfeldt, J. M. Oran, N. A. Abu-Hatab, N. V. Lavrik, and M. J. Sepaniak, “Nanofabrication of densely packed metal-polymer arrays for surface-enhanced raman spectrometry,” Applied Spectroscopy, vol. 59, no. 12, pp. 1501–1508, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Song and H. E. Elsayed-Ali, “Aqueous phase Ag nanoparticles with controlled shapes fabricated by a modified nanosphere lithography and their optical properties,” Applied Surface Science, vol. 256, no. 20, pp. 5961–5967, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. U. S. Dinish, F. C. Yaw, A. Agarwal, and M. Olivo, “Development of highly reproducible nanogap SERS substrates: comparative performance analysis and its application for glucose sensing,” Biosensors and Bioelectronics, vol. 26, no. 5, pp. 1987–1992, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. L. A. Dick, A. D. McFarland, C. L. Haynes, and R. P. Van Duyne, “Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): improvements in surface nanostructure stability and suppression of irreversible loss,” Journal of Physical Chemistry B, vol. 106, no. 4, pp. 853–860, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annual Review of Analytical Chemistry, vol. 1, no. 1, pp. 601–626, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. W. W. Yu and I. M. White, “Inkjet printed surface enhanced raman spectroscopy array on cellulose paper,” Analytical Chemistry, vol. 82, no. 23, pp. 9626–9630, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. C. H. Lee, L. Tian, and S. Singamaneni, “Paper-based SERS swab for rapid trace detection on real-world surfaces,” ACS Applied Materials and Interfaces, vol. 2, no. 12, pp. 3429–3435, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. C. H. Lee, M. E. Hankus, L. Tian, P. M. Pellegrino, and S. Singamaneni, “Highly sensitive surface enhanced Raman scattering substrates based on filter paper loaded with plasmonic nanostructures,” Analytical Chemistry, vol. 83, no. 23, pp. 8953–8958, 2011. View at Google Scholar
  25. Y. H. Lee, D. W. Kim, S. I. Shin, and S. G. Oh, “Preparation of Au colloids by polyol process using NaHCO3 as a buffering agent,” Materials Chemistry and Physics, vol. 100, no. 1, pp. 85–91, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Akhavan, The Chemistry of Explosives, The Royal Society of Chemistry, 2nd edition, 2004.
  27. J. I. Jerez-Rozo, O. M. Primera-Pedrozo, M. A. Barreto-Cabán, and S. P. Hernández-Rivera, “Enhanced Raman scattering of 2,4,6-TNT using metallic colloids,” IEEE Sensors Journal, vol. 8, no. 6, pp. 974–982, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Kneipp, Y. Wang, R. R. Dasari et al., “Near-infrared surface-enhanced Raman scattering of trinitrotoluene on colloidal gold and silver,” Spectrochimica Acta A, vol. 51, no. 12, pp. 2171–2175, 1995. View at Google Scholar · View at Scopus
  29. J. Clarkson, W. E. Smith, D. N. Batchelder, D. A. Smith, and A. M. Coats, “A theoretical study of the structure and vibrations of 2,4,6-trinitrotolune,” Journal of Molecular Structure, vol. 648, no. 3, pp. 203–214, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. S. P. Hernández-Rivera and J. Castillo-Chará, “Ab initio, DFT calculation and vibrational analysis of 2,4,6- trinitrotoluene,” Vibrational Spectroscopy, vol. 53, no. 2, pp. 248–259, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. L. M. Epstein, E. S. Shubina, L. D. Ashkinadze, and L. A. Kazitsyna, “Nitro group vibrations in spectra of nitroaromatic compounds with donor substituents,” Spectrochimica Acta A, vol. 38, no. 3, pp. 317–322, 1982. View at Google Scholar · View at Scopus
  32. J. F. Bertrán, M. Hernández, and B. La Serna, “Study of the anomalous NO2 symmetric stretch in p-NO2 aniline,” Spectrochimica Acta A, vol. 38, no. 2, pp. 149–151, 1982. View at Google Scholar · View at Scopus