Table of Contents
International Journal of Spectroscopy
Volume 2014, Article ID 841593, 15 pages
http://dx.doi.org/10.1155/2014/841593
Research Article

Quantum Chemical and Spectroscopic Investigations of (Ethyl 4 hydroxy-3-((E)-(pyren-1-ylimino)methyl)benzoate) by DFT Method

School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh-175001, India

Received 17 February 2014; Revised 2 April 2014; Accepted 5 April 2014; Published 9 July 2014

Academic Editor: Hakan Arslan

Copyright © 2014 Diwaker and Abhishek Kumar Gupta. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. K. Gupta, A. Dhir, and C. P. Pradeep, “A fluorescence 'turn-on' chemodosimeter for selective detection of Nb5+ ions in mixed aqueous media,” Dalton Transactions, vol. 42, no. 36, pp. 12819–12823, 2013. View at Publisher · View at Google Scholar · View at Scopus
  2. J. R. Lakowicz, Topics in Fluorescence Spectroscopy. Volume 4: Probe Design and Chemical Sensing, Plenum Press, New York, NY, USA, 1994.
  3. J. L. H. Lindenhovius, E. M. Hornsveld, A. den Ouden, W. A. J. Wessel, and H. H. J. ten Kate, “Powder-in-tube (PIT) Nb3Sn conductors for high-field magnets,” IEEE Transactions on Applied Superconductivity, vol. 10, no. 1, pp. 975–978, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Touati, “Iron and oxidative stress in bacteria,” Archives of Biochemistry and Biophysics, vol. 373, no. 1, pp. 1–6, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Çatikkaş, E. Aktan, and Z. Seferoǧlu, “DFT, FT-Raman, FTIR, NMR, and UV-Vis studies of a hetarylazo indole dye,” International Journal of Quantum Chemistry, vol. 113, no. 5, pp. 683–689, 2013. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Raj, Y. Sheena Mary, C. Yohannan Panicker, H. T. Varghese, and K. Raju, “IR, Raman, SERS and computational study of 2-(benzylsulfanyl)-3,5-dinitrobenzoic acid,” Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy, vol. 113, pp. 28–36, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. V. Chiş, S. Filip, V. Miclǎuş et al., “Vibrational spectroscopy and theoretical studies on 2,4- dinitrophenylhydrazine,” Journal of Molecular Structure, vol. 744–747, pp. 363–368, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Kumru, V. Küçük, and P. Akyürek, “Vibrational spectra of quinoline-4-carbaldehyde: combined experimental and theoretical studies,” Spectrochimica Acta A: Molecular and Bimolecular Spectroscopy, vol. 113, pp. 72–79, 2013. View at Publisher · View at Google Scholar
  9. R. J. Xavier and P. Dinesh, “Conformational stability, vibrational spectra, HOMO-LUMO and NBO analysis of 1,3,4-thiadiazolidine-2,5-dithione with experimental (FT-IR and FT-Raman) techniques and scaled quantum mechanical calculations,” Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy, vol. 113, pp. 171–181, 2013. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Lee, W. Yang, and R. G. Parr, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density,” Physical Review B, vol. 37, no. 2, pp. 785–789, 1988. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Dltchfield, “Molecular orbital theory of magnetic shielding and magnetic susceptibility,” The Journal of Chemical Physics, vol. 56, no. 11, pp. 5688–5691, 1972. View at Google Scholar · View at Scopus
  12. K. Wolinski, J. F. Hinton, and P. Pulay, “Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations,” Journal of the American Chemical Society, vol. 112, no. 23, pp. 8251–8260, 1990. View at Google Scholar · View at Scopus
  13. E. D. Glendening and A. E. Reed, NBO Version 3.1, TCL, University of Wisconsin, Madison, Wis, USA, 1998.
  14. M. Izadyar and M. Khavani, “Quantum chemistry aspects of the solvent effects on the ene reaction of 1-Phenyl-1,3,4-triazolin-2,5-dione and 2-methyl-2-butene,” International Journal of Quantum Chemistry, vol. 114, no. 10, pp. 666–674, 2014. View at Publisher · View at Google Scholar
  15. H. Pir, N. Günay, Ö. Tamer, D. Avci, and Y. Atalay, “Theoretical investigation of 5-(2-Acetoxyethyl)-6-methylpyrimidin-2,4-dione: Conformational study, NBO and NLO analysis, molecular structure and NMR spectra,” Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy, vol. 112, pp. 331–342, 2013. View at Publisher · View at Google Scholar · View at Scopus
  16. Diwaker, “Quantum mechanical and spectroscopic (FT-IR, 13C, 1H NMR and UV) investigations of 2-(5-(4-Chlorophenyl)-3-(pyridin-2-yl)-4,5-dihydropyrazol-1-yl)benzo[d]thiazole by DFT method,” Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy, vol. 128, pp. 819–829, 2014. View at Publisher · View at Google Scholar
  17. J. Fleming, Frontier Orbitals and Organic Chemical Reactions, John Wiley and Sons, New York, NY, USA, 1981.
  18. R. G. Pearson, “Absolute electronegativity and hardness correlated with molecular orbital theory,” Proceedings of the National Academy of Sciences, vol. 83, no. 22, pp. 8440–8441, 1986. View at Publisher · View at Google Scholar
  19. P. Politzer, P. R. Laurence, and K. Jayasuriya, “Molecular electrostatic potentials: an effective tool for the elucidation of biochemical phenomena,” Environmental Health Perspectives, vol. 61, pp. 191–202, 1985. View at Google Scholar · View at Scopus
  20. A. Pullman, B. Pullman, and R. Lavery, “Molecular electrostatic potential versus field. significance for DNA and its constituents,” Journal of Molecular Structure: THEOCHEM, vol. 93, pp. 85–91, 1983. View at Publisher · View at Google Scholar · View at Scopus
  21. V. D. Vitnik, J. Ž. Vitnik, N. R. Banjac, N. V. Valentić, G. S. Ušćumlić, and I. O. Juranić, “Quantum mechanical and spectroscopic (FT-IR, 13C, 1H NMR and UV) investigations of potent antiepileptic drug 1-(4-chloro-phenyl)-3-phenyl-succinimide,” Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy, vol. 117, pp. 42–53, 2014. View at Publisher · View at Google Scholar
  22. B. Çatıkkaş, E. Aktan, and Z. Seferoǧlu, “DFT, FT-Raman, FTIR, NMR, and UV-Vis studies of a hetarylazo indole dye,” International Journal of Quantum Chemistry, vol. 113, no. 5, pp. 683–689, 2013. View at Publisher · View at Google Scholar
  23. M. H. Jamróz, J. C. Dobrowolski, and R. Brzozowski, “Vibrational modes of 2,6-, 2,7-, and 2,3-diisopropylnaphthalene. A DFT study,” Journal of Molecular Structure, vol. 787, no. 1–3, pp. 172–183, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. Gaussian 09, “Gaussian,” Wallingford CT, 2004.
  25. N. Günay, H. Pir, D. Avci, and Y. Atalay, “NLO and NBO analysis of Sarcosine-Maleic acid by using HF and B3LYP calculations,” Journal of Chemistry, vol. 2013, Article ID 712130, 16 pages, 2013. View at Publisher · View at Google Scholar
  26. W. B. Person and J. H. Newton, “Dipole moment derivatives and infrared intensities. I. Polar tensors,” The Journal of Chemical Physics, vol. 61, no. 3, pp. 1040–1049, 1974. View at Google Scholar · View at Scopus