Abstract

Vacation time queues with Markovian arrival process (MAP) are mainly useful in modeling and performance analysis of telecommunication networks based on asynchronous transfer mode (ATM) environment. This paper analyzes a single-server finite capacity queue wherein service is performed in batches of maximum size “b” with a minimum threshold “a” and arrivals are governed by MAP. The server takes a single vacation when he finds less than “a” customers after service completion. The distributions of buffer contents at various epochs (service completion, vacation termination, departure, arbitrary and pre-arrival) have been obtained. Finally, some performance measures such as loss probability and average queue length are discussed. Numerical results are also presented in some cases.