Table of Contents
International Journal of Vehicular Technology
Volume 2009, Article ID 423141, 12 pages
http://dx.doi.org/10.1155/2009/423141
Research Article

Priority-Based Inter-Vehicle Communication for Highway Safety Messaging Using IEEE 802.11e

Computer Engineering Department, Bangkok University, Phahonyothin Road, Pathum Thani 12120, Thailand

Received 21 November 2008; Accepted 9 May 2009

Academic Editor: Maode Ma

Copyright © 2009 Chakkaphong Suthaputchakun. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. International Road Traffic and Accident Database (IRTAD), “Road Traffic Data and Accident Traffic Data,” June 2001. View at Google Scholar
  2. R. Bishop, “Intelligent Vehicle Application world-wide,” IEEE Intelligent Systems, February 2000.
  3. D. Jones, “Keeping Cars from Crashing,” IEEE Spectrum, Septenber 2001.
  4. European Transport Safety Council (ETSC), “Intelligent Transportation Systems and Road Safety Report,” September 1999.
  5. Intelligent Transportation Systems (ITS) America, “IVI Candidate User Service,” October 2001. View at Google Scholar
  6. Advanced Crusie-Assist Highway System Research Association (AHSRA) Japan, “Primary Requirement of Advanced Crusie-Assist Highway System,” February 2001. View at Google Scholar
  7. M. Aoki, “Inetr-vehicle communication: technical issues on vehicle control application-oriented approach to ad-hoc networking,” IEEE Communication Magazine, June 2001. View at Google Scholar
  8. A. Widodo and T. Hasegawa, “Impacts of environment adaptive running with and without IVCN,” in Proceedings of the IEEE Vehicular Technology Conference (VTC '00), vol. 1, pp. 327–330, May 2000.
  9. M.-T. Sun, W. Feng, T. Lai, K. Yamada, H. Okada, and K. Fujimura, “GPS-based message broadcast for adaptive inter-vehicle communications,” in Proceedings of the IEEE Vehicular Technology Conference (VTC '00), vol. 6, pp. 2685–2692, September 2000.
  10. Y. Morioka, T. Sota, and M. Nagakawa, “An anti-car collision system using GPS and 5.8 GHz inter-vehicle communication at an off-sight intersection,” in Proceedings of the IEEE Vehicular Technology Conference (VTC '00), September 2000.
  11. T. Nagaosa and T. Hasegawa, “Code assignment and the multicode sense scheme in an inter-vehicle CDMA communication network,” IEICE Transactions on Fundamentals of Electronics, vol. E81-A, no. 11, pp. 2327–2333, 1998. View at Google Scholar
  12. Dedicated Short Range Communications Working Group, http://grouper.ieee.org/groups/802/11/Reports/tgp_update.htm.
  13. The Fleetnet Project, http://www.fleetnet.de/.
  14. The Now: Network on Wheels Project, http://www.network-on-wheels.de/.
  15. Internet ITS Consortium, http://www.internetits.org/.
  16. B. Williams and T. Camp, “Comparison of broadcasting techniques for mobile ad hoc networks,” in Proceedings of the 3rd International Symposium on Mobile Ad Hoc Networking and Computing (MobiHOC '02), pp. 194–205, June 2002.
  17. D. Lee, R. Attias, A. Puri, R. Sengupta, S. Tripakis, and P. Varaiya, “A wireless token ring protocol for intelligent transportation systems,” in Proceedings of the 4th IEEE Conference on Intelligent Transportation Systems (ITSC '01), pp. 1152–1157, August 2001.
  18. K. Tokuda, M. Akiyama, and H. Fujii, “DOLPHIN for inter-vehicle communications system,” in Proceedings of the IEEE Intelligent Vehicles Symposium (IV '00), pp. 504–509, October 2000.
  19. Q. Xu, T. Mak, J. Ko, and R. Sengupta, “Vehicle-to-vehicle safety messaging in DSRC,” in Proceedings of the 1st ACM International Workshop on Vehicular Ad Hoc Networks (VANET '04), pp. 19–28, October 2004.
  20. Y. Kim and M. Nakagawa, “R-ALOHA protocol for SS inter-vehicle communication network using head spacing information,” in Proceedings of the IEEE Intelligent Vehicles Symposium (IV '96), pp. 278–283, September 1996.
  21. F. Borgonovo, A. Capone, M. Cesana, and L. Fratta, “RR-ALOHA, a reliable R-ALOHA broadcast channel for ad-hoc inter-vehicle communication networks,” in Proceedings of the 1st Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net '02), September 2002.
  22. K. Shanmukh, G. Murthy, and R. Rao, “A decentralized Location-based Channel Access (LCA) protocol, particularly useful for inter vehicle communication,” in Proceedings of the IEEE Vehicular Technology Conference (VTC '03), April 2003.
  23. M. Torrent-Moreno, D. Jiang, and H. Hartenstein, “Broadcast reception rates and effects of priority access in 802.11-based vehicular ad-hoc networks,” in Proceedings of the 1st ACM International Workshop on Vehicular Ad Hoc Networks (VANET '04), pp. 10–18, October 2004.
  24. S. Yang, H. H. Refai, and X. Ma, “CSMA based inter-vehicle communication using distributed and polling coordination,” in Proceedings of the 8th IEEE Conference on Intelligent Transportation Systems (ITSC '05), pp. 167–171, September 2005. View at Publisher · View at Google Scholar
  25. C. Suthaputchakun and A. Ganz, “Military inter-vehicle communication with message priority using IEEE 802.11e,” in Proceedings of the IEEE Military Communications Conference (MILCOM '06), October 2006. View at Publisher · View at Google Scholar
  26. C. Suthaputchakun and A. Ganz, “Priority based inter-vehicle communication in vehicular ad hoc networks using IEEE802.11e,” in Proceedings of the 65th IEEE Vehicular Technology Conference (VTC '07), April 2007.
  27. 802.11 WG, IEEE Std 802.11e/D10.0, “Draft Amendment to Standard [for] Information Technology—Telecommunications and Information Exchange Between Systems—LAN/MAN Specific Requirements—Part 11: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Medium Access Control (MAC) Quality of Service (QoS) Enhancements,” September 2004. View at Google Scholar
  28. OPNET Technologies, Inc., “OPNET Modeler v11.5,” http://www.opnet.com/.
  29. H. Daizo, T. Iwahashi, M. Bandai, and T. Watanabe, “An inter-vehicle communication MAC protocol supported by road side communication and its extension,” in Proceedings of the 1st ACM International Workshop on Vehicular Ad Hoc Networks (VANET '04), October 2004.
  30. G. Korkmaz and E. Ekici, “Urban multi-hop broadcast protocol for inter-vehicle communication systems,” in Proceedings of the 1st ACM International Workshop on Vehicular Ad Hoc Networks (VANET '04), pp. 76–85, October 2004.
  31. K. Fujimura and T. Hasegawa, “A collaborative MAC protocol for inter-vehicle and road to vehicle communications,” in Proceedings of the 7th IEEE Conference on Intelligent Transportation Systems (ITSC '04), pp. 816–821, October 2004.
  32. M. Lott, “Performance of a medium access scheme for inter-vehicle communication,” in Proceedings of the International Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS '02), July 2002.