Table of Contents
International Journal of Vehicular Technology
Volume 2012, Article ID 465819, 10 pages
http://dx.doi.org/10.1155/2012/465819
Research Article

River Flow Lane Detection and Kalman Filtering-Based B-Spline Lane Tracking

1Electrical and Computer Department, School of Engineering, Curtin University Sarawak, CDT 250, Sarawak, 98009 Miri, Malaysia
2School of Computer Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Selangor, 46150 Petaling Jaya, Malaysia
3Centre for Communications Engineering Research, Edith Cowan University, Joondalup, WA 6027, Australia

Received 27 March 2012; Accepted 26 September 2012

Academic Editor: T. A. Gulliver

Copyright © 2012 King Hann Lim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Li and F. Y. Wang, Advanced Motion Control and Sensing for Intelligent Vehicles, Springer, New York, NY, USA, 2007.
  2. J. M. Armingol, A. de la Escalera, C. Hilario et al., “IVVI: intelligent vehicle based on visual information,” Robotics and Autonomous Systems, vol. 55, no. 12, pp. 904–916, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Zhou, R. Xu, X. F. Hu, and Q. T. Ye, “A robust lane detection and tracking method based on computer vision,” Measurement Science and Technology, vol. 17, no. 4, pp. 736–745, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Bertozzi, A. Broggi, M. Cellario, A. Fascioli, P. Lombardi, and M. Porta, “Artificial vision in road vehicles,” Proceedings of the IEEE, vol. 90, no. 7, pp. 1258–1270, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. V. Kastrinaki, M. Zervakis, and K. Kalaitzakis, “A survey of video processing techniques for traffic applications,” Image and Vision Computing, vol. 21, no. 4, pp. 359–381, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. J. C. McCall and M. M. Trivedi, “Video-based lane estimation and tracking for driver assistance: survey, system, and evaluation,” IEEE Transactions on Intelligent Transportation Systems, vol. 7, no. 1, pp. 20–37, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Bar Hillel, R. Lerner, D. Levi, and G. Raz, “Recent progress in road and lane detection: a survey,” Machine Vision and Applications. In press. View at Publisher · View at Google Scholar
  8. Y. Wang, N. Dahnoun, and A. Achim, “A novel system for robust lane detection and tracking,” Signal Processing, vol. 92, no. 2, pp. 319–334, 2012. View at Publisher · View at Google Scholar
  9. J. D. Crisman and C. E. Thorpe, “SCARF. A color vision system that tracks roads and intersections,” IEEE Transactions on Robotics and Automation, vol. 9, no. 1, pp. 49–58, 1993. View at Publisher · View at Google Scholar · View at Scopus
  10. M. A. Turk, D. G. Morgenthaler, K. D. Gremban, and M. Marra, “VITS–a vision system for autonomous land vehicle navigation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 10, no. 3, pp. 342–361, 1988. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Kluge and C. Thorpe, “The YARF system for vision-based road following,” Mathematical and Computer Modelling, vol. 22, no. 4–7, pp. 213–233, 1995. View at Google Scholar · View at Scopus
  12. Z. Kim, “Robust lane detection and tracking in challenging scenarios,” IEEE Transactions on Intelligent Transportation Systems, vol. 9, no. 1, pp. 16–26, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Baluja, “Evolution of an artificial neural network based autonomous land vehicle controller,” IEEE Transactions on Systems, Man, and Cybernetics B, vol. 26, no. 3, pp. 450–463, 1996. View at Google Scholar · View at Scopus
  14. C. Thorpe, M. H. Hebert, T. Kanade, and S. A. Shafer, “Vision and navigation for the Carnegie-Mellon navlab,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 10, no. 3, pp. 362–373, 1988. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Pomerleau, “RALPH: rapidly adapting lateral position handler,” in Proceedings of the Intelligent Vehicles Symposium, pp. 506–511, September 1995. View at Scopus
  16. S. K. Kenue and S. Bajpayee, “LaneLok: robust line and curve fitting of lane boundaries,” in Proceedings of the 7th Mobile Robots, pp. 491–503, Boston, Mass, USA, November 1992. View at Scopus
  17. D. J. LeBlanc, G. E. Johnson, P. J. T. Venhovens et al., “CAPC: a road-departure prevention system,” IEEE Control Systems Magazine, vol. 16, no. 6, pp. 61–71, 1996. View at Google Scholar · View at Scopus
  18. C. Kreucher and S. Lakshmanan, “LANA: a lane extraction algorithm that uses frequency domain features,” IEEE Transactions on Robotics and Automation, vol. 15, no. 2, pp. 343–350, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. C. R. Jung and C. R. Kelber, “Lane following and lane departure using a linear-parabolic model,” Image and Vision Computing, vol. 23, no. 13, pp. 1192–1202, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. C. R. Jung and C. R. Kelber, “An improved linear-parabolic model for lane following and curve detection,” in Proceedings of the 18th Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI'05), pp. 131–138, October 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Wang, L. Bai, and M. Fairhurst, “Robust road modeling and tracking using condensation,” IEEE Transactions on Intelligent Transportation Systems, vol. 9, no. 4, pp. 570–579, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Bai, Y. Wang, and M. Fairhurst, “An extended hyperbola model for road tracking for video-based personal navigation,” Knowledge-Based Systems, vol. 21, no. 3, pp. 265–272, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Wang, D. Shen, and E. K. Teoh, “Lane detection using spline model,” Pattern Recognition Letters, vol. 21, no. 8, pp. 677–689, 2000. View at Google Scholar · View at Scopus
  24. Y. Wang, E. K. Teoh, and D. Shen, “Lane detection and tracking using B-Snake,” Image and Vision Computing, vol. 22, no. 4, pp. 269–280, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Y. Xu and J. L. Prince, “Snakes, shapes, and gradient vector flow,” IEEE Transactions on Image Processing, vol. 7, no. 3, pp. 359–369, 1998. View at Google Scholar · View at Scopus
  26. K. H. Lim, K. P. Seng, and L. M. Ang, “Improvement of lane marks extraction technique under different road conditions,” in Proceedings of the 3rd IEEE International Conference on Computer Science and Information Technology (ICCSIT'10), pp. 80–84, Chengdu, China, July 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. K. H. Lim, A. C. Le Ngo, K. P. Seng, and L.-M. Ang, “UNMC-VIER AutoVision database,” in Proceedings of the International Conference on Computer Applications and Industrial Electronics (ICCAIE '10), pp. 650–654, Kuala Lumpur, Malaysia, December 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. K. I. Joy, “Cubic uniform B-spline curve refinement,” in On-Line Geometric Modeling Notes, University of California (Davis), 1996. View at Google Scholar
  29. Carnegie-Mellon-University, “CMU/VASC image database, 1997–2003,” http://vasc.ri.cmu.edu//idb/html/road/may30_90/index.html.
  30. K. H. Lim, “River flow lane detection and Kalman filtering based B-spline lane tracking,” 2011.