Table of Contents
International Journal of Vehicular Technology
Volume 2012 (2012), Article ID 492105, 8 pages
http://dx.doi.org/10.1155/2012/492105
Research Article

A Semi-Deterministic Channel Model for VANETs Simulations

1Laboratoire XLIM-SIC, UMR CNRS 6172, Université de Poitiers, 86034 Poitiers, France
2Laboratoire MIPS-GRTC, Université de Haute Alsace, 68000 Colmar, France

Received 15 October 2010; Revised 24 May 2011; Accepted 2 June 2011

Academic Editor: Athanasios Panagopoulos

Copyright © 2012 Jonathan Ledy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Boban, G. Misek, and O. K. Tonguz, “What is the best achievable QoS for unicast routing in VANET?” in Proceedings of the IEEE Globecom Workshops, pp. 1–10, New Oreleans, La, USA, December 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Y. Wang, “The effects of wireless transmission range on path lifetime in vehicle-formed mobile ad hoc networks on highways,” in Proceedings of the IEEE International Conference on Communications, vol. 5, pp. 3177–3181, Seoul, Korea, May 2005. View at Scopus
  3. S. Yousefi, S. Bastani, and M. Fathy, “On the performance of safety message dissemination in vehicular ad hoc networks,” in Proceedings of the 4th European Conference on Universal Multiservice Networks, pp. 377–387, Toulouse, France, February 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. F. J. Martinez, C. K. Toh, J. C. Cano, C. T. Calafate, and P. Manzoni, “Realistic radio propagation models (RPMs) for VANET simulations,” in Proceedings of the IEEE Wireless Communications and Networking Conference, Budapest, Hungary, April 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. 3GPP, “Spatial channel model for MIMO simulations,” TR 25.996 V9.0.0 (2009-12), http://www.3gpp.org/ftp/Specs/archive/25_series/25.996/25996-900.zip.
  6. I. Stepanov and K. Rothermel, “On the impact of a more realistic physical layer on MANET simulations results,” Elsevier Ad Hoc Networks Journal, vol. 6, no. 1, pp. 61–78, 2006. View at Google Scholar
  7. R. Delahaye, A.-M. Poussard, Y. Pousset, and R. Vauzelle, “Propagation models and physical layer quality criteria influence on ad hoc networks routing,” in Proceedings of the 7th International Conference on Intelligent Transport Systems Telecommunications, pp. 433–437, Sophia Antipolis, France, June 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Dhoutaut, A. Régis, and F. Spies, “Impact of radio propagation models in vehicular ad hoc networks simulations,” in Proceedings of the 3rd ACM International Workshop on Vehicular Ad Hoc Networks (VANET '06), pp. 40–49, Los Angeles, Calif, USA, September 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Han and N. B. Abu-Ghazaleh, “Estimated measurement-based Markov models: Towards flexible and accurate modeling of wireless channels,” in Proceedings of the 5th IEEE International Conference on Wireless and Mobile Computing Networking and Communication, pp. 331–337, Marrakech, Morocco, October 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. I. Sen and D. W. Matolak, “Vehicle-vehicle channel models for the 5-GHz band,” IEEE Transactions on Intelligent Transportation Systems, vol. 9, no. 2, Article ID 4517519, pp. 235–245, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Acosta-Marum and M. A. Ingram, “A BER-based partitioned model for a 2.4GHz vehicle-to-vehicle expressway channel,” Wireless Personal Communications, vol. 37, no. 3-4, pp. 421–443, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Acosta-Marum and M. A. Ingram, “Six time- and frequency- selective empirical channel models for vehicular wireless LANs,” IEEE Vehicular Technology Magazine, vol. 2, no. 4, Article ID 4498409, pp. 4–11, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Karedal, F. Tufvesson, N. Czink et al., “A geometry-based stochastic MIMO model for vehicle-to-vehicle communications,” IEEE Transactions on Wireless Communications, vol. 8, no. 7, pp. 3646–3657, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. A. F. Molisch, F. Tufvesson, J. Karedal, and C. F. Mecklenbrauker, “A survey on vehicle-to-vehicle propagation channels,” IEEE Wireless Communications, vol. 16, no. 6, pp. 12–22, 2009. View at Google Scholar
  15. G. Marfia, G. Pau, E. De Sena, E. Giordano, and M. Gerla, “Evaluating vehicle network strategies for downtown Portland: opportunistic infrastructure and the importance of realistic mobility models,” in Proceedings of the 5th International Conference on Mobile Systems, Applications and Services, pp. 47–51, San Juan, Puerto Rico, USA, June 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Günes, M. Wenig, and A. Zimmermann, “Realistic mobility and propagation framework for MANET simulations,” in Proceedings of the 6th International Conference on Networking, Atlanta, Ga, USA, 2007.
  17. J. Haerri, F. Filali, C. Bonnet , and M. Fiore, “VanetMobiSim: generating realistic mobility patterns for VANETs,” in Proceedings of the 3rd ACM International Workshop on Vehicular Ad Hoc Networks (VANET '06), Los Angeles, Calif, USA, September 2006.
  18. http://www.isi.edu/nsnam/ns.
  19. http://www.3gpp.org/ftp/Specs/html-info/25996.htm.
  20. http://www.ist-winner.org.
  21. D. S. Baum, J. Hansen, G. Del Galdo, M. Milojevic, J. Salo, and P. Kyösti, “An interim channel model for beyond-3G systems: extending the 3GPP spatial channel model (SCM),” in Proceedings of the 61st Vehicular Technology Conference (VTC ' 05), vol. 5, pp. 3132–3136, Stockholm, Sweden, June 2005. View at Scopus
  22. http://radio.tkk.fi/en/research/rf_applications_in_mobile_communication/radio_channel/scme-2006-08-30.zip.
  23. F. Escarieu, V. Degardin, L. Aveneau et al., “3D modelling of the propagation in an indoor environment : a theoretical and experimental approach,” in Proceedings of the European Conference on Wireless Technologies (ECWT '01), London, UK, September 2001.
  24. R. Delahaye, Simulation réaliste et efficace de la couche physique pour l'aide au routage des réseaux ad hoc, Ph.D. thesis, University of Poitiers, France, 2007.
  25. IEEE Standard for information technology—Telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements, Part 11: Wireless LAN Medium Acces Control (MAC) and Physical layer (PHY) specifications, Amendment 6: Wireless Access in Vehicular Environments, IEEE std 802.11p, 2010.
  26. G. J. Foschini, “Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas,” Bell Labs Technical Journal, vol. 1, no. 2, pp. 41–59, 1996. View at Google Scholar · View at Scopus
  27. E. Telatar, “Capacity of multi-antenna Gaussian channels,” European Transactions on Telecommunications, vol. 10, no. 6, pp. 585–595, 1999. View at Google Scholar · View at Scopus
  28. C. Oestges and B. Clerckx, MIMO Wireless Communications, Elsevier, 2007.
  29. http://sourceforge.net/apps/wordpress/itpp.
  30. W. Hamidouche, R. Vauzelle, C. Olivier, Y. Pousset, and C. Perrine, “Impact of realistic MIMO physical layer on video transmission over mobile ad hoc network,” in Proceedings of the IEEE 20th Personal, Indoor and Mobile Radio Communications Symposium (PIMRC ' 09), Tokyo, Japan, September 2009. View at Publisher · View at Google Scholar · View at Scopus