Table of Contents
International Journal of Vehicular Technology
Volume 2013 (2013), Article ID 263983, 11 pages
http://dx.doi.org/10.1155/2013/263983
Research Article

A Driver Face Monitoring System for Fatigue and Distraction Detection

1Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran 14399, Iran
2Computer Engineering Department, Iran University of Science and Technology, Tehran 16846, Iran

Received 31 July 2012; Revised 30 October 2012; Accepted 24 November 2012

Academic Editor: Chyi-Ren Dow

Copyright © 2013 Mohamad-Hoseyn Sigari et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. L. Haworth, T. J. Triggs, and E. M. Grey, Driver Fatigue: Concepts, Measurement and Crash Countermeasures, Human Factors Group, Department of Psychology, Monash University, 1988.
  2. C. T. Lin, L. W. Ko, I. F. Chung et al., “Adaptive EEG-based alertness estimation system by using ICA-based fuzzy neural networks,” IEEE Transactions on Circuits and Systems, vol. 53, no. 11, pp. 2469–2476, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. T. V. Jan, T. Karnahl, K. Seifert, J. Hilgenstock, and R. Zobel, Don't Sleep and Drive—VW's Fatigue Detection Technology, Centre for Automotive Safety Research, Adelaide University, Adelaide, Australia, 2005.
  4. Q. Ji and X. Yang, “Real-time eye, gaze, and face pose tracking for monitoring driver vigilance,” Real-Time Imaging, vol. 8, no. 5, pp. 357–377, 2002. View at Google Scholar · View at Scopus
  5. T. Brandt, R. Stemmer, and A. Rakotonirainy, “Affordable visual driver monitoring system for fatigue and monotony,” in Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (SMC '04), pp. 6451–6456, Hague, The Netherlands, October 2004. View at Scopus
  6. M. Bayly, B. Fildes, M. Regan, and K. Young, “Review of crash effectiveness of intelligent transport system,” TRaffic Accident Causation in Europe (TRACE), 2007.
  7. H. Cai and Y. Lin, “An experiment to non-intrusively collect physiological parameters towards driver state detection,” in Proceedings of the SAE World Congress, Detroit, Mich, USA, 2007.
  8. T. Nakagawa, T. Kawachi, S. Arimitsu, M. Kanno, K. Sasaki, and H. Hosaka, “Drowsiness detection using spectrum analysis of eye movement and effective stimuli to keep driver awake,” DENSO Technical Review, vol. 12, pp. 113–118, 2006. View at Google Scholar
  9. M. H. Yang, D. J. Kriegman, and N. Ahuja, “Detecting faces in images: a survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 1, pp. 34–58, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Batista, “A drowsiness and point of attention monitoring system for driver vigilance,” in Proceedings of the 10th International IEEE Conference on Intelligent Transportation Systems (ITSC '07), pp. 702–708, Seattle, Wash, USA, October 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Abtahi, B. Hariri, and S. Shirmohammadi, “Driver drowsiness monitoring based on yawning detection,” in Proceedings of the Instrumentation and Measurement Technology Conference, Hangzhou, China, 2011.
  12. Y. Du, P. Ma, X. Su, and Y. Zhang, “Driver fatigue detection based on eye state analysis,” in Proceedings of the Joint Conference on Information Science, Shen Zhen, China, 2008.
  13. W. B. Horng, C. Y. Chen, Y. Chang, and C. H. Fan, “Driver fatigue detection based on eye tracking and dynamic template matching,” in Proceedings of the IEEE International Conference on Networking, Sensing and Control, pp. 7–12, Taipei, Taiwan, March 2004. View at Scopus
  14. P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple features,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. I511–I518, Cambridge, Mass, USA, December 2001. View at Scopus
  15. A. de la Escalera, M. J. Flores, and J. M. Armingol, “Driver drowsiness warning system using visual information for both diurnal and nocturnal illumination conditions,” EURASIP Journal on Advances in Signal Processing, vol. 2010, Article ID 438205, 2010. View at Google Scholar · View at Scopus
  16. T. Wang and P. Shi, “Yawning detection for determining driver drowsiness,” in Proceedings of the IEEE International Workshop on VLSI Design and Video Technology (IWVDVT '05), pp. 373–376, Suzhou, China, May 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Liu, Z. Li, L. Wang, and Y. Zhao, “A practical driver fatigue detection algorithm based on eye state,” in Proceedings of the 2nd Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia '10), pp. 235–238, Shanghai, China, September 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Grace, V. E. Byme, D. M. Bierman et al., “A Drowsy driver detection system for heavy vehicles,” in Proceedings of the 17th AIAA/IEEE/SAE Digital Avionics Systems Conference (DASC '98), pp. I36/1–I36/8, Washington, DC, USA, 1998.
  19. L. M. Bergasa, J. Nuevo, M. A. Sotelo, R. Barea, and M. E. Lopez, “Real-time system for monitoring driver vigilance,” IEEE Transactions on Intelligent Transportation Systems, vol. 7, no. 1, pp. 63–77, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. M. J. Flores, J. M. Armingol, and A. D. l. Escalera, “Driver drowsiness detection system under infrared illumination for an intelligent vehicle,” IET Intelligent Transport Systems, vol. 5, pp. 241–251, 2011. View at Google Scholar
  21. P. Smith, M. Shah, and N. da Vitoria Lobo, “Determining driver visual attention with one camera,” IEEE Transactions on Intelligent Transportation Systems, vol. 4, no. 4, pp. 205–218, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. P. R. Tabrizi and R. A. Zoroofi, “Drowsiness detection based on brightness and numeral features of eye image,” in Proceedings of the 5th International Conference on Intelligent Information Hiding and Multimedia Signal Processing, pp. 1310–1313, Kyoto, Japan, September 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. Z. Zhang and J. S. Zhang, “Driver fatigue detection based intelligent vehicle control,” in Proceedings of the 18th International Conference on Pattern Recognition (ICPR '06), pp. 1262–1265, Hong Kong, China, August 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Zheng and Z. Wang, “Robust and precise eye detection based on locally selective projection,” in Proceedings of the 19th International Conference on Pattern Recognition (ICPR '08), Tampa, Fla, USA, December 2008. View at Scopus
  25. D. Wenhui, Q. Peishu, and H. Jing, “Driver fatigue detection based on fuzzy fusion,” in Proceedings of the Chinese Control and Decision Conference (CCDC '08), pp. 2640–2643, Shandong, China, July 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. J. C. McCall and M. M. Trivedi, “Facial action coding using multiple visual cues and a hierarchy of particle filters,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW '06), pp. 150–155, New York, NY, USA, June 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. W. Dong and X. Wu, “Driver fatigue detection based on the distance of eyelid,” in Proceedings of the IEEE International Workshop on VLSI Design and Video Technology (IWVDVT '05), pp. 365–468, Suzhou, China, May 2005. View at Scopus
  28. M. H. Sigari, N. Mozayani, and H. R. Pourreza, “Fuzzy running average and fuzzy background subtraction: concepts and application,” International Journal of Computer Science and Network Security, vol. 8, pp. 138–143, 2008. View at Google Scholar