Table of Contents
International Journal of Vehicular Technology
Volume 2013 (2013), Article ID 398361, 5 pages
http://dx.doi.org/10.1155/2013/398361
Research Article

Improving Energy Conversion Efficiency by means of Power Splitting in Dual Drive Train EV Applications

imk automotive GmbH, Annaberger Straße 73, 09126 Chemnitz, Germany

Received 6 March 2013; Revised 7 July 2013; Accepted 21 July 2013

Academic Editor: Lingyang Song

Copyright © 2013 Michael A. Roscher et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. A. Roscher, J. Vetter, and D. U. Sauer, “Influence of cathodes technology on the power capability and charge acceptance of lithium ion batteries,” in Proceedings of the 24th International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium (EVS '09), Stavanger, Norway, May 2009.
  2. Panasonic, “NNP series—NCR18650A,” Technical Datasheet, 2010, http://www.panasonic.com/. View at Google Scholar
  3. K. Imai, T. Ashida, Y. Zhang, and S. Minami, “Theoretical performance of EV range extender compared with plugin hybrid,” Journal of Asian Electric Vehicles, vol. 6, no. 2, pp. 1181–1184, 2008. View at Google Scholar
  4. Y. Yang, J. Liu, and T. Hu, “An energy management system for a directly-driven electric scooter,” Energy Conversion and Management, vol. 52, no. 1, pp. 621–629, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Ota, H. Taniguchi, T. Nakajima, K. M. Liyanage, J. Baba, and A. Yokoyama, “Autonomous distributed V2G (vehicle-to-grid) considering charging request and battery condition,” in Proceedings of the IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe '10), November 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Kermani, S. Delprat, R. Trigui, and T. Guerra, “Predictive energy management of hybrid vehicle,” in Proceedings of the IEEE Vehicle Power and Propulsion Conference (VPPC '08), vol. 20, no. 1, pp. 1–6, September 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Dardanelli, M. Tanelli, S. M. Savaresi, and M. Santucci, “Active energy management of electric vehicles with cartographic data,” in Proceedings of the IEEE International Electric Vehicle Conference (IEVC '12), Greenville, SC, USA, March 2012. View at Publisher · View at Google Scholar
  8. Y. Zhang, W. Wang, Y. Kobayashi, and K. Shirai, “Remaining driving range estimation of electric vehicle,” in Proceedings of the IEEE International Electric Vehicle Conference (IEVC '12), Greenville, SC, USA, March 2012. View at Publisher · View at Google Scholar
  9. C. Dextreit, F. Assadian, I. Kolmanovsky, J. Mahtani, and K. Burnham, “Hybrid electric vehicle energy management using gametheory,” SAE Technical Paper 2008-01-1317, 2008. View at Publisher · View at Google Scholar
  10. A. A. Ferreira, J. A. Pomilio, G. Spiazzi, and L. de Araujo Silva, “Energy management fuzzy logic supervisory for electric vehicle power supplies system,” IEEE Transactions on Power Electronics, vol. 23, no. 1, pp. 107–115, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Schiffer, O. Bohlen, R. W. De Doncker, D. U. Sauer, and K. Y. Ahn, “Optimized energy management for fuelcell-supercap hybrid electric vehicles,” in Proceedings of the IEEE Vehicle Power and Propulsion Conference (VPPC '05), pp. 716–723, September 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. M. A. Roscher, W. Leidholdt, and J. Trepte, “High efficiency energy management in BEV applications,” International Journal of Electrical Power and Energy Systems, vol. 37, no. 1, pp. 126–130, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Wu, L. Li, B. Kou, and Z. Ping, “The research on energy regeneration of permanent magnet synchronous motor used for hybrid electric vehicle,” in Proceedings of the IEEE Vehicle Power and Propulsion Conference (VPPC '08), pp. 1–4, September 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Jishun, L. Jun, W. Qingnian, W. Jiaxue, and S. Jinhu, “Study on mechanism of energy saving for double motor configuration hybrid electric vehicle,” in Proceedings of the International Conference on Mechatronic Science, Electric Engineering and Computer (MEC '11), pp. 2596–2602, August 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Lee, K. Nam, S. Choi, and S. Kwon, “A lookup table based loss minimizing control for FCEV permanent magnet synchronous motors,” in Proceedings of the IEEE Vehicle Power and Propulsion Conference (VPPC '07), pp. 175–179, September 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. J. J. C. Gyselinck, L. Vandevelde, D. Makaveev, and J. A. A. Melkebeek, “Calculation of no load losses in an induction motor using an inverse vector Preisach model and an eddy current loss model,” IEEE Transactions on Magnetics, vol. 36, no. 4, pp. 856–860, 2002. View at Google Scholar · View at Scopus
  17. B. J. Chalmers and I. Musaba, “Performance characteristics of permanent-magnet and reluctance machines to meet EV requirements,” in Proceedings of the IEE Colloquium on Machines and Drives for Electric and Hybrid Vehicles, Digest No: 1996/152, August 2002.
  18. F. Deng, “Improved analytical modeling of commutation losses including space harmonic effects in permanent magnet in brushless DC motors,” in Proceedings of the IEEE International Electric Machines and Drives Conference (IEMDC '97), May 1997. View at Scopus
  19. J. Lee, K. Nam, S. Choi, and S. Kwon, “Loss-minimizing control of PMSM with the use of polynomial approximations,” IEEE Transactions on Power Electronics, vol. 24, no. 4, pp. 1071–1082, 2009. View at Publisher · View at Google Scholar · View at Scopus