Table of Contents
Influenza Research and Treatment
Volume 2010 (2010), Article ID 489213, 10 pages
http://dx.doi.org/10.1155/2010/489213
Research Article

Evaluation of a Subunit H5 Vaccine and an Inactivated H5N2 Avian Influenza Marker Vaccine in Ducks Challenged with Vietnamese H5N1 Highly Pathogenic Avian Influenza Virus

1School of Veterinary and Biomedical Sciences, Murdoch University, 90 South Street Murdoch, WA 6150, Australia
2Agri-Food and Veterinary Authority of Singapore, 5 Maxwell Road, Singapore 069110
3Department of Microbiology, The University of Hong Kong, Pathology Building, Queen Mary Hospital Compound, Pokfulam, Hong Kong
4Temasek Life Sciences Laboratory, 1, Research Link, National University of Singapore, Singapore 117604

Received 11 January 2010; Accepted 8 April 2010

Academic Editor: Ayato Takada

Copyright © 2010 Tze-Hoong Chua et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. E. Swayne, “Principles for vaccine protection in chickens and domestic waterfowl against avian influenza: emphasis on Asian H5N1 high pathogenicity avian influenza,” Annals of the New York Academy of Sciences, vol. 1081, pp. 174–181, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. D. E. Swayne, M. Garcia, J. R. Beck, N. Kinney, and D. L. Suarez, “Protection against diverse highly pathogenic H5 avian influenza viruses in chickens immunized with a recombinant fowlpox vaccine containing an H5 avian influenza hemagglutinin gene insert,” Vaccine, vol. 18, no. 11-12, pp. 1088–1095, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. T. M. Ellis, C. Y. H. C. Leung, M. K. W. Chow et al., “Vaccination of chickens against H5N1 avian influenza in the face of an outbreak interrupts virus transmission,” Avian Pathology, vol. 33, no. 4, pp. 405–412, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. M. J. Pantin-Jackwood and D. E. Swayne, “Pathobiology of asian highly pathogenic avian influenza H5N1 virus infections in ducks,” Avian Diseases, vol. 51, supplement 1, pp. 250–259, 2007. View at Google Scholar · View at Scopus
  5. T. M. Ellis, R. B. Bousfield, L. A. Bissett et al., “Investigation of outbreaks of highly pathogenic H5N1 avian influenza in waterfowl and wild birds in Hong Kong in late 2002,” Avian Pathology, vol. 33, no. 5, pp. 492–505, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. K. M. Sturm-Ramirez, D. J. Hulse-Post, E. A. Govorkova et al., “Are ducks contributing to the endemicity of highly pathogenic H5N1 influenza virus in Asia?” Journal of Human Virology, vol. 79, no. 17, pp. 11269–11279, 2005. View at Google Scholar
  7. D. J. Hulse-Post, K. M. Sturm-Ramirez, J. Humberd et al., “Role of domestic ducks in the propagation and biological evolution of highly pathogenic H5N1 influenza viruses in Asia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 30, pp. 10682–10687, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Gilbert, P. Chaitaweesub, T. Parakamawongsa et al., “Free-grazing ducks and highly pathogenic avian influenza, Thailand,” Emerging Infectious Diseases, vol. 12, no. 2, pp. 227–234, 2006. View at Google Scholar · View at Scopus
  9. T. Songserm, R. Jam-On, N. Sae-Heng et al., “Domestic ducks and H5N1 influenza epidemic, Thailand,” Emerging Infectious Diseases, vol. 12, no. 4, pp. 575–581, 2006. View at Google Scholar · View at Scopus
  10. D. E. Swayne, J. R. Beck, M. L. Perdue, and C. W. Beard, “Efficacy of vaccines in chickens against highly pathogenic Hong Kong H5N1 avian influenza,” Avian Diseases, vol. 45, no. 2, pp. 355–365, 2001. View at Google Scholar · View at Scopus
  11. I. Capua and S. Marangon, “The use of vaccination to combat multiple introductions of Notifiable Avian Influenza viruses of the H5 and H7 subtypes between 2000 and 2006 in Italy,” Vaccine, vol. 25, no. 27, pp. 4987–4995, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. R. G. Webster, R. J. Webby, E. Hoffmann et al., “The immunogenicity and efficacy against H5N1 challenge of reverse genetics-derived H5N3 influenza vaccine in ducks and chickens,” Virology, vol. 351, no. 2, pp. 303–311, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Tian, S. Zhang, Y. Li et al., “Protective efficacy in chickens, geese and ducks of an H5N1-inactivated vaccine developed by reverse genetics,” Virology, vol. 341, no. 1, pp. 153–162, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Middleton, J. Bingham, P. Selleck et al., “Efficacy of inactivated vaccines against H5N1 avian influenza infection in ducks,” Virology, vol. 359, no. 1, pp. 66–71, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Crawford, B. Wilkinson, A. Vosnesensky et al., “Baculovirus-derived hemagglutinin vaccines protect against lethal influenza infections by avian H5 and H7 subtypes,” Vaccine, vol. 17, no. 18, pp. 2265–2274, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Bublot, N. Pritchard, D. E. Swayne et al., “Development and use of fowlpox vectored vaccines for avian influenza,” vol. 1081, pp. 193–201. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Qiao, K. Yu, Y. Jiang et al., “Development of a recombinant fowlpox virus vector-based vaccine of H5N1 subtype avian influenza,” in Developments in Biologicals, vol. 124, pp. 127–132, 2006. View at Scopus
  18. J. Ge, G. Deng, Z. Wen et al., “Newcastle disease virus-based live attenuated vaccine completely protects chickens and mice from lethal challenge of homologous and heterologous H5N1 avian influenza viruses,” Journal of Virology, vol. 81, no. 1, pp. 150–158, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Luschow, O. Werner, T. C. Mettenleiter, and W. Fuchs, “Protection of chickens from lethal avian influenza A virus infection by live-virus vaccination with infectious laryngotracheitis virus recombinants expressing the hemagglutinin (H5) gene,” Vaccine, vol. 19, no. 30, pp. 4249–4259, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Kodihalli, D. L. Kobasa, and R. G. Webster, “Strategies for inducing protection against avian influenza A virus subtypes with DNA vaccines,” Vaccine, vol. 18, no. 23, pp. 2592–2599, 2000. View at Google Scholar · View at Scopus
  21. K. B. Grogan, D. A. Halvorson, and R. D. Slemons, Avian Influenza Vaccines: Focusing on H5N1 High Pathogenicity Avian Influenza (HPAI), Council for Agricultural Science and Technology, Ames, Iowa, USA, 2007, Special Publication No. 26.
  22. L. Lu, L. Yu, and J. Kwang, “Baculovirus surface-displayed hemagglutinin of H5N1 influenza virus sustains its authentic cleavage, hemagglutination activity, and antigenicity,” Biochemical and Biophysical Research Communications, vol. 358, no. 2, pp. 404–409, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. World Organisation for Animal Health (OIE), “Manual of Diagnostic Tests and Vaccines for Terrestrial Animals,” Chapter 2.1.14. Avian Influenza, 2008, http://www.oie.int/eng/normes/mmanual/2008/pdf/2.03.04_AI.pdf .
  24. C. M. James, Y. Y. Foong, J. P. Mansfield, S. G. Fenwick, and T. M. Ellis, “Use of tetanus toxoid as a differentiating infected from vaccinated animals (DIVA) strategy for sero-surveillance of avian influenza virus vaccination in poultry,” Vaccine, vol. 25, no. 31, pp. 5892–5901, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. C. M. James, Y. Y. Foong, J. P. Mansfield, A. R. Vind, S. G. Fenwick, and T. M. Ellis, “Evaluation of a positive marker of avian influenza vaccination in ducks for use in H5N1 surveillance,” Vaccine, vol. 26, no. 42, pp. 5345–5351, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. L. J. Reed and H. Muench, “A simple method of estimating fifty percent endpoints,” The American Journal of Hygiene, vol. 27, no. 3, pp. 493–497, 1938. View at Google Scholar
  27. WHO, “WHO manual on animal influenza diagnosis and surveillance,” 2002, Global Influenza Program, Geneva, Switzerland, [WHO/CDS/CSR/NCS/2002.5]. View at Google Scholar
  28. H. Kida, R. Yanagawa, and Y. Matsuoka, “Duck influenza lacking evidence of disease signs and immune response,” Infection and Immunity, vol. 30, no. 2, pp. 547–553, 1980. View at Google Scholar · View at Scopus
  29. V. S. Hinshaw, W. J. Bean, R. G. Webster, and G. Sriram, “Genetic reassortment of influenza A virus in the intestinal tract of ducks,” Virology, vol. 102, no. 2, pp. 412–419, 1980. View at Google Scholar · View at Scopus
  30. D. A. Higgins, K. F. Shortridge, and P. L. K. Ng, “Bile immunoglobulin of the duck (Anas platyrhynchos). II. Antibody response in influenza A virus infections,” Immunology, vol. 62, no. 3, pp. 499–504, 1987. View at Google Scholar
  31. D. L. Suarez and S. Schultz-Cherry, “Immunology of avian influenza virus: a review,” Developmental and Comparative Immunology, vol. 24, no. 2-3, pp. 269–283, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. R. G. Webster, Y. Guan, M. Peiris, and H. Chen, “H5N1 influenza continues to circulate and change,” Microbe, vol. 1, no. 12, pp. 559–565, 2006. View at Google Scholar · View at Scopus
  33. G. J. D. Smith, D. Vijaykrishna, T. M. Ellis et al., “Characterization of avian influenza viruses A (H5N1) from wild birds, Hong Kong, 2004–2008,” Emerging Infectious Diseases, vol. 15, no. 3, pp. 402–407, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. D. E. Swayne and B. L. Akey, “Avian influenza control strategies in the United States of America,” in Avian Influenza, Prevention and Control, R. Schrijver and G. Koch, Eds., pp. 113–130, Springer, Dordrecht, The Netherlands, 2005. View at Google Scholar
  35. R. G. Webster and D. J. Hulse-Post, “Microbial adaptation and change: avian influenza,” OIE Revue Scientifique et Technique, vol. 23, no. 2, pp. 453–465, 2004. View at Google Scholar · View at Scopus