Table of Contents
Influenza Research and Treatment
Volume 2011, Article ID 126794, 12 pages
http://dx.doi.org/10.1155/2011/126794
Research Article

A Novel Vaccine Using Nanoparticle Platform to Present Immunogenic M2e against Avian Influenza Infection

1Department of Pathobiology and Veterinary Science, University of Connecticut, 61 North Eagleville Road, Storrs, CT 06268, USA
2Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269, USA
3The Institute of Materials Science, University of Connecticut, 97 North Eagleville Road, Storrs, CT 06269, USA
4M.E. Müller Institute, University of Basel, 50/70 Klingelbergstrasse, 4056 Basel, Switzerland
5Institute for Medical Microbiology, University of Basel, 4003 Basel, Switzerland
6Charles River SPAFAS, Inc., 106 RT 32 North Franklin, Storrs, CT 06254, USA
7Department of Statistics, University of Connecticut, 215 Glenbrook Road, Storrs, CT 06269, USA

Received 6 June 2011; Revised 24 September 2011; Accepted 12 October 2011

Academic Editor: Oleg P. Zhirnov

Copyright © 2011 Sankhiros Babapoor et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Zhao, M. Jin, H. Li et al., “Detection of antibodies to the nonstructural protein (NS1) of avian influenza viruses allows distinction between vaccinated and infected chickens,” Avian Diseases, vol. 49, no. 4, pp. 488–493, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. I. Capua and S. Marangon, “The use of vaccination to combat multiple introductions of Notifiable Avian Influenza viruses of the H5 and H7 subtypes between 2000 and 2006 in Italy,” Vaccine, vol. 25, no. 27, pp. 4987–4995, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. D. L. Suarez, C. W. Lee, and D. E. Swayne, “Avian influenza vaccination in North America: strategies and difficulties,” Developments in Biologicals, vol. 124, pp. 117–124, 2006. View at Google Scholar · View at Scopus
  4. D. E. Swayne, “Avian influenza vaccines and therapies for poultry,” Comparative Immunology, Microbiology & Infectious Diseases, vol. 32, no. 4, pp. 351–363, 2009. View at Google Scholar
  5. L. J. Holsinger and R. A. Lamb, “Influenza virus M2 integral membrane protein is a homotetramer stabilized by formation of disulfide bonds,” Virology, vol. 183, no. 1, pp. 32–43, 1991. View at Publisher · View at Google Scholar · View at Scopus
  6. D. A. Steinhauer and J. J. Skehel, “Genetics of influenza viruses,” Annual Review of Genetics, vol. 36, pp. 305–332, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. J. J. Treanor, E. L. Tierney, S. L. Zebedee, R. A. Lamb, and B. R. Murphy, “Passively transferred monoclonal antibody to the M2 protein inhibits influenza A virus replication in mice,” Journal of Virology, vol. 64, no. 3, pp. 1375–1377, 1990. View at Google Scholar · View at Scopus
  8. S. Neirynck, T. Deroo, X. Saelens, P. Vanlandschoot, W. M. Jou, and W. Fiers, “A universal influenza A vaccine based on the extracellular domain of the M2 protein,” Nature Medicine, vol. 5, no. 10, pp. 1157–1163, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. A. M. Frace, A. I. Klimov, T. Rowe, R. A. Black, and J. M. Katz, “Modified M2 proteins produce heterotypic immunity against influenza A virus,” Vaccine, vol. 17, no. 18, pp. 2237–2244, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. K. J. Jakeman, H. Smith, and C. Sweet, “Mechanism of immunity to influenza: Maternal and passive neonatal protection following immunization of adult ferrets with a live vaccinia-influenza virus haemagglutinin recombinant but not with recombinants containing other influenza virus proteins,” Journal of General Virology, vol. 70, part 6, pp. 1523–1531, 1989. View at Google Scholar · View at Scopus
  11. S. L. Layton, D. R. Kapczynski, S. Higgins et al., “Vaccination of chickens with recombinant Salmonella expressing M2e and CD154 epitopes increases protection and decreases viral shedding after low pathogenic avian influenza challenge,” Poultry Science, vol. 88, no. 11, pp. 2244–2252, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Okuda, A. Ihata, S. Watabe et al., “Protective immunity against influenza A virus induced by immunization with DNA plasmid containing influenza M gene,” Vaccine, vol. 19, no. 27, pp. 3681–3691, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. V. A. Slepushkin, J. M. Katz, R. A. Black, W. C. Gamble, P. A. Rota, and N. J. Cox, “Protection of mice against influenza A virus challenge by vaccination with baculovirus-expressed M2 protein,” Vaccine, vol. 13, no. 15, pp. 1399–1402, 1995. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Liang, K. Mozdzanowska, G. Palladino, and W. Gerhard, “Heterosubtypic immunity to influenza type A virus in mice: effector mechanisms and their longevity,” Journal of Immunology, vol. 152, no. 4, pp. 1653–1661, 1994. View at Google Scholar · View at Scopus
  15. M. De Filette, W. M. Jou, A. Birkett et al., “Universal influenza A vaccine: optimization of M2-based constructs,” Virology, vol. 337, no. 1, pp. 149–161, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. W. Fiers, M. De Filette, A. Birkett, S. Neirynck, and W. Min Jou, “A “universal” human influenza A vaccine,” Virus Research, vol. 103, no. 1-2, pp. 173–176, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. M. De Filette, W. Martens, A. Smet et al., “Universal influenza A M2e-HBc vaccine protects against disease even in the presence of pre-existing anti-HBc antibodies,” Vaccine, vol. 26, no. 51, pp. 6503–6507, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Bae, J. Choi, Y. Jang, S. Ahn, and B. Hur, “Innovative vaccine production technologies: the evolution and value of vaccine production technologies,” Archives of Pharmacal Research, vol. 32, no. 4, pp. 465–480, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Denis, N. Majeau, E. Acosta-Ramirez et al., “Immunogenicity of papaya mosaic virus-like particles fused to a hepatitis C virus epitope: evidence for the critical function of multimerization,” Virology, vol. 363, no. 1, pp. 59–68, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. J. W. Huleatt, V. Nakaar, P. Desai et al., “Potent immunogenicity and efficacy of a universal influenza vaccine candidate comprising a recombinant fusion protein linking influenza M2e to the TLR5 ligand flagellin,” Vaccine, vol. 26, no. 2, pp. 201–214, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Raman, G. Machaidze, A. Lustig, U. Aebi, and P. Burkhard, “Structure-based design of peptides that self-assemble into regular polyhedral nanoparticles,” Nanomedicine, vol. 2, no. 2, pp. 95–102, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. S. A. Kaba, C. Brando, Q. Guo et al., “A nonadjuvanted polypeptide nanoparticle vaccine confers long-lasting protection against rodent malaria,” Journal of Immunology, vol. 183, no. 11, pp. 7268–7277, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. T. A. Pimentel, Z. Yan, S. A. Jeffers, K. V. Holmes, R. S. Hodges, and P. Burkhard, “Peptide nanoparticles as novel immunogens: design and analysis of a prototypic severe acute respiratory syndrome vaccine,” Chemical Biology and Drug Design, vol. 73, no. 1, pp. 53–61, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. E. D. Swayne, R. J. Glisson, M.W. Jackwood, E. J. Pearson, and M. W. Reed, “A laboratory manual for the isolation and identification of avian pathogens,” American Association of Avian Pathologist University of Pennsylvania, 1998.
  25. H. Song, G. R. Nieto, and D. R. Perez, “A new generation of modified live-attenuated avian influenza viruses using a two-strategy combination as potential vaccine candidates,” Journal of Virology, vol. 81, no. 17, pp. 9238–9248, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. E. Hoffmann, J. Stech, Y. Guan, R. G. Webster, and D. R. Perez, “Universal primer set for the full-length amplification of all influenza A viruses,” Archives of Virology, vol. 146, no. 12, pp. 2275–2289, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Fronhoffs, G. Totzke, S. Stier et al., “A method for the rapid construction of cRNA standard curves in quantitative real-time reverse transcription polymerase chain reaction,” Molecular and Cellular Probes, vol. 16, no. 2, pp. 99–110, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Spackman, D. A. Senne, T. J. Myers et al., “Development of a real-time reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes,” Journal of Clinical Microbiology, vol. 40, no. 9, pp. 3256–3260, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Stetefeld, M. Jenny, T. Schulthess, R. Landwehr, J. Engel, and R. A. Kammerer, “Crystal structure of a naturally occurring parallel right-handed coiled coil tetramer,” Nature Structural Biology, vol. 7, no. 9, pp. 772–776, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. P. B. Harbury, T. Zhang, P. S. Kim, and T. Alber, “A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants,” Science, vol. 262, no. 5138, pp. 1401–1406, 1993. View at Google Scholar · View at Scopus
  31. B. S. Ladman, S. C. Rosenberger, J. K. Rosenberger, C. R. Pope, and J. Gelb, “Virulence of low pathogenicity H7N2 avian influenza viruses from the delmarva peninsula for broiler and leghorn chickens and turkeys,” Avian Diseases, vol. 52, no. 4, pp. 623–631, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. G. Le Gall-Recule, M. Cherbonnel, N. Pelotte, P. Blanchard, Y. Morin, and V. Jestin, “Importance of a prime-boost DNA/protein vaccination to protect chickens against low-pathogenic H7 avian influenza infection,” Avian Diseases, vol. 51, no. 1, supplement 1, pp. 490–494, 2007. View at Google Scholar · View at Scopus
  33. M. F. Bachmann, U. H. Rohrer, T. M. Kundig, K. Burki, H. Hengartner, and R. M. Zinkernagel, “The influence of antigen organization on B cell responsiveness,” Science, vol. 262, no. 5138, pp. 1448–1451, 1993. View at Google Scholar · View at Scopus
  34. T. Fehr, M. F. Bachmann, E. Bucher et al., “Role of repetitive antigen patterns for induction of antibodies against antibodies,” Journal of Experimental Medicine, vol. 185, no. 10, pp. 1785–1792, 1997. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Jegerlehner, N. Schmitz, T. Storni, and M. F. Bachmann, “Influenza A vaccine based on the extracellular domain of M2: weak protection mediated via antibody-dependent NK cell activity,” Journal of Immunology, vol. 172, no. 9, pp. 5598–5605, 2004. View at Google Scholar · View at Scopus