Table of Contents
ISRN Nanotechnology
Volume 2011, Article ID 163168, 6 pages
http://dx.doi.org/10.5402/2011/163168
Research Article

Effect of Silicon Crystal Size on Photoluminescence Appearance in Porous Silicon

Physik der Kondensierten Materie, TU Braunschweig, 38106 Braunschweig, Germany

Received 31 March 2011; Accepted 16 May 2011

Academic Editor: M. Tommasini

Copyright © 2011 Pushpendra Kumar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Richter, P. Steiner, F. Kozlowski, and W. Lang, “Current-induced light emission from a porous silicon device,” IEEE Electron Device Letters, vol. 12, no. 12, pp. 691–692, 1991. View at Google Scholar · View at Scopus
  2. G. Smestad, M. Kunst, and C. Vial, “Photovoltaic response in electrochemically prepared photoluminescent porous silicon,” Solar Energy Materials and Solar Cells, vol. 26, no. 4, pp. 277–283, 1992. View at Google Scholar · View at Scopus
  3. G. Willeke, H. Nussbaumer, H. Bender, and E. Bucher, “A simple and effective light trapping technique for polycrystalline silicon solar cells,” Solar Energy Materials and Solar Cells, vol. 26, no. 4, pp. 345–356, 1992. View at Google Scholar · View at Scopus
  4. J. P. Proot, C. Delerue, and G. Allan, “Electronic structure and optical properties of silicon crystallites: application to porous silicon,” Applied Physics Letters, vol. 61, no. 16, pp. 1948–1950, 1992. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Lehmann, “Interplay of structures and forces in the electronic conductivity of liquid mercury,” Physics and Chemistry of Liquids, vol. 28, no. 4, pp. 245–252, 1996. View at Google Scholar · View at Scopus
  6. A. Janshoff, K.-P. Dancil, C. Steinem et al., “Macroporous p-type silicon Fabry-Perot layers. Fabrication, characterization, and applications in biosensing,” Journal of the American Chemical Society, vol. 120, no. 46, pp. 12108–12116, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Herino, G. Bomchil, K. Barla, C. Bertrand, and J. L. Ginoux, “Porosity and pore size distributions of porous silicon layers,” Journal of the Electrochemical Society, vol. 134, no. 8, pp. 1994–2000, 1987. View at Google Scholar · View at Scopus
  8. R. L. Smith and S. D. Collins, “Porous silicon formation mechanisms,” Journal of Applied Physics, vol. 71, no. 8, pp. R1–R22, 1992. View at Publisher · View at Google Scholar · View at Scopus
  9. R. L. Smith, S. F. Chuang, and S. D. Collins, “A theoretical model of the formation morphologies of porous silicon,” Journal of Electronic Materials, vol. 17, no. 6, pp. 533–541, 1988. View at Publisher · View at Google Scholar · View at Scopus
  10. L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Applied Physics Letters, vol. 57, no. 10, pp. 1046–1048, 1990. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Ossicini, L. Pavesi, and F. Priolo, Light Emitting Silicon for Microphotonics, Springer, Berlin, Germany, 2003.
  12. A. G. Cullis, L. T. Canham, and P. D. J. Calcott, “The structural and luminescence properties of porous silicon,” Journal of Applied Physics, vol. 82, no. 3, pp. 909–965, 1997. View at Google Scholar · View at Scopus
  13. M. S. Brandt, H. D. Fuchs, M. Stutzmann, J. Weber, and M. Cardona, “The origin of visible luminescencefrom “porous silicon”: a new interpretation,” Solid State Communications, vol. 81, no. 4, pp. 307–312, 1992. View at Google Scholar · View at Scopus
  14. H. D. Fuchs, M. Stutzmann, M. S. Brandt et al., “Porous silicon and siloxene: vibrational and structural properties,” Physical Review B, vol. 48, no. 11, pp. 8172–8189, 1993. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Y. Gorbach, G. Y. Rudko, P. S. Smertenko et al., “Simultaneous changes in the photoluminescence, infrared absorption and morphology of porous silicon during etching by HF,” Semiconductor Science and Technology, vol. 11, no. 4, pp. 601–606, 1996. View at Google Scholar · View at Scopus
  16. G. C. John and V. A. Singh, “Theory of the photoluminescence spectra of porous silicon,” Physical Review B, vol. 50, no. 8, pp. 5329–5334, 1994. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Jia, S. L. Zang, S. P. Wong et al., “Further evidence for the quantum confined electrochemistry model of the formation mechanism of p—type porous silicon,” Applied Physics Letters, vol. 69, no. 22, pp. 3399–3401, 1996. View at Google Scholar · View at Scopus
  18. V. Lehmann and U. Gosele, “Porous silicon: quantum sponge structures grown via a self-adjusting etching process,” Advanced Materials, vol. 4, no. 2, pp. 114–116, 1992. View at Google Scholar · View at Scopus
  19. P. Kumar, P. Lemmens, M. Ghosh, F. Ludwig, and M. Schilling, “Effect of HF concentration on physical and electronic properties of electrochemically formed nanoporous silicon,” Journal of Nanomaterials, vol. 2009, Article ID 728957, 7 pages, 2009. View at Publisher · View at Google Scholar
  20. P. Kumar and P. Huber, “Quenching of reducing properties of mesoporous silicon and its use as template for metal/semiconductor deposition,” Journal of the Electrochemical Society, vol. 157, no. 3, pp. D172–D176, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. P. O. Keeffe, Y. Aoyagi, S. Komuro, T. Kato, and T. Morikawa, “Room-temperature backbond oxidation of the porous silicon surface by oxygen radical irradiation,” Applied Physics Letters, vol. 66, p. 836, 1995. View at Publisher · View at Google Scholar · View at Scopus
  22. X. G. Zhang, S. D. Collins, and R. L. Smith, “Porous silicon formation and electropolishing of silicon by anodic polarization in HF solution,” Journal of the Electrochemical Society, vol. 136, no. 5, pp. 1561–1565, 1989. View at Google Scholar · View at Scopus
  23. X. G. Zhang, “Mechanism of pore formation on n-type silicon,” Journal of the Electrochemical Society, vol. 138, no. 12, pp. 3750–3756, 1991. View at Google Scholar · View at Scopus
  24. Z. Sui, P. P. Leong, I. P. Herman, G. S. Higashi, and H. Temkin, “Raman analysis of light-emitting porous silicon,” Applied Physics Letters, vol. 60, no. 17, pp. 2086–2088, 1992. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Furukawa and T. Miyasato, “Quantum size effects on the optical band gap of microcrystalline Si:H,” Physical Review B, vol. 38, no. 8, pp. 5726–5729, 1988. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Richter, Z. P. Wang, and L. Ley, “The one phonon Raman spectrum in microcrystalline silicon,” Solid State Communications, vol. 39, no. 5, pp. 625–629, 1981. View at Google Scholar · View at Scopus
  27. I. H. Campbell and P. M. Fauchet, “The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors,” Solid State Communications, vol. 58, no. 10, pp. 739–741, 1986. View at Google Scholar · View at Scopus
  28. T. Kanata, H. Murai, and K. Kubota, “Raman and x-ray scattering from ultrafine semiconductor particles,” Journal of Applied Physics, vol. 61, no. 3, pp. 969–972, 1986. View at Publisher · View at Google Scholar · View at Scopus
  29. K. K. Tiong, P. M. Amirtharaj, F. H. Pollak, and D. E. Aspnes, “Effects of As+ ion implantation on the Raman spectra of GaAs: “spatial correlation” interpretation,” Applied Physics Letters, vol. 44, no. 1, pp. 122–124, 1984. View at Publisher · View at Google Scholar · View at Scopus
  30. V. Paillard, P. Puech, M. A. Laguna, R. Carles, B. Kohn, and F. Huisken, “Improved one-phonon confinement model for an accurate size determination of silicon nanocrystals,” Journal of Applied Physics, vol. 86, no. 4, pp. 1921–1924, 1999. View at Google Scholar · View at Scopus
  31. Z. Sui, P. P. Leong, I. P. Herman, G. S. Higashi, and H. Temkin, “Raman analysis of light-emitting porous silicon,” Applied Physics Letters, vol. 60, no. 17, pp. 2086–2088, 1992. View at Publisher · View at Google Scholar · View at Scopus
  32. P. Moriarty, “Nanostructured materials,” Reports on Progress in Physics, vol. 64, no. 3, pp. 297–381, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. A. K. Sood, K. Jayaram, and D. V. S. Muthu, “Raman and high-pressure photoluminescence studies on porous silicon,” Journal of Applied Physics, vol. 72, no. 10, pp. 4963–4965, 1992. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. H. Ogata, N. Yoshimi, R. Yasuda, T. Tsuboi, T. Sakka, and A. Otsuki, “Structural change in p-type porous silicon by thermal annealing,” Journal of Applied Physics, vol. 90, no. 12, pp. 6487–6492, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Kumar and P. Huber, “Nucleation and growth of copper on mesoporous silicon by immersion plating,” Journal of Physics D: Applied Physics, vol. 40, no. 9, pp. 2864–2869, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. K. Xu and S. Adachi, “Light-emitting porous silicon formed by photoetching in aqueous HF/KIO 3 solution,” Journal of Physics D: Applied Physics, vol. 39, no. 21, pp. 4572–4577, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. P. Kumar, T. Hofmann, K. Knorr, P. Huber, P. Scheib, and P. Lemmens, “Tuning the pore wall morphology of mesoporous silicon from branchy to smooth, tubular by chemical treatment,” Journal of Applied Physics, vol. 103, no. 2, Article ID 024303, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Roy, K. Jayaram, and A. K. Sood, “Raman and photoluminescence studies on thermally annealed porous silicon,” Solid State Communications, vol. 89, no. 3, pp. 229–233, 1994. View at Google Scholar · View at Scopus
  39. W.-Q Huang, F. Jin, H.-X Wang, L. Xu et al., “Stimulated emission from trap electronic states in oxide of nanocrystal Si,” Applied Physics Letters, vol. 92, no. 22, Article ID 221910, 2008. View at Publisher · View at Google Scholar