Table of Contents
ISRN Vascular Medicine
Volume 2011 (2011), Article ID 165018, 6 pages
http://dx.doi.org/10.5402/2011/165018
Research Article

Resistance of Platelets in Hypercholesterolemia to Inhibition by Activated Coagulation Factor X

1Department of Medicine, Mount Sinai School of Medicine, New York, NY, USA
2Department of Rehabilitation Medicine, New York, NY 10032, USA
3National Center of Excellence for the Medical Consequences of Spinal Cord Injury, USA
4Medical and Research Services, James J Peters Veterans Affairs Medical Center, Bronx, NY 10468, USA
5Jersey Shore University Medical Center 1945 Route 33 Neptune, NJ 07753, USA

Received 20 July 2011; Accepted 7 September 2011

Academic Editor: J. Komorowski

Copyright © 2011 Nighat Kahn et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. R. Nofer, M. F. Brodde, and B. E. Kehrel, “High-density lipoproteins, platelets and the pathogenesis of atherosclerosis,” Clinical and Experimental Pharmacology and Physiology, vol. 37, no. 7, pp. 726–735, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Massberg, C. Schulz, and M. Gawaz, “Role of platelets in the pathophysiology of acute coronary syndrome,” Seminars in Vascular Medicine, vol. 3, no. 2, pp. 147–161, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Theilmeier, C. Michiels, E. Spaepen et al., “Endothelial von Willebrand factor recruits platelets to atherosclerosis-prone sites in response to hypercholesterolemia,” Blood, vol. 99, no. 12, pp. 4486–4493, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Lindemann, N. D. Tolley, D. A. Dixon et al., “Activated platelets mediate inflammatory signaling by regulated interleukin 1β synthesis,” Journal of Cell Biology, vol. 154, no. 3, pp. 485–490, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. V. Henn, J. R. Slupsky, M. Gräfe et al., “CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells,” Nature, vol. 391, no. 6667, pp. 591–594, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Von Hundelshausen, R. R. Koenen, M. Sack et al., “Heterophilic interactions of platelet factor 4 and RANTES promote monocyte arrest on endothelium,” Blood, vol. 105, no. 3, pp. 924–930, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Baltus, P. von Hundelshausen, S. F. Mause, W. Buhre, R. Rossaint, and C. Weber, “Differntial and additive effects of platelet-derived chemokiunes on monocyte arrest on inflamed endothelium under flow conditions,” Journal of Leukocyte Biology, vol. 78, pp. 435–441, 2005. View at Google Scholar
  8. T. Z. Naqvi, P. K. Shah, P. A. Ivey et al., “Evidence that high-density lipoprotein cholesterol is an independent predictor of acute platelet-dependent thrombus formation,” American Journal of Cardiology, vol. 84, no. 9, pp. 1011–1017, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. P. G. Lerch, M. O. Spycher, and J. E. Doran, “Reconstituted high density lipoprotein (rHDL) modulates platelet activity in vitro and ex vivo,” Thrombosis and Haemostasis, vol. 80, no. 2, pp. 316–320, 1998. View at Google Scholar · View at Scopus
  10. H. S. Kruth, “Platelet-mediated cholesterol accumulation in cultured aortic smooth muscle cells,” Science, vol. 227, no. 4691, pp. 1243–1245, 1985. View at Google Scholar · View at Scopus
  11. L. K. Curtiss, A. S. Black, Y. Takagi, and E. F. Plow, “New mechanism for foam cell generation in atherosclerotic lesions,” Journal of Clinical Investigation, vol. 80, no. 2, pp. 367–373, 1987. View at Google Scholar · View at Scopus
  12. A. K. Sinha, A. K. Rao, J. Willis, and R. W. Colman, “Inhibition of thromboxane A2 synthesis in human platelets by coagulation factor X(a),” Proceedings of the National Academy of Sciences of the United States of America, vol. 80, no. 19, pp. 6086–6090, 1983. View at Google Scholar · View at Scopus
  13. A. K. Sinha and R. W. Colman, “Cyclic AMP independent inhibition of platelet aggregation by prostaglandin E1 is mediated through factor Xa,” Thrombosis Research, vol. 30, no. 6, pp. 553–564, 1983. View at Google Scholar · View at Scopus
  14. W. B. Kannel and P. W. Wilson, “Update on hyperlipidemia in the elderly: is this a risk factor for heart disease?” American Journal of Geriatric Cardiology, vol. 5, no. 5, pp. 9–14, 1996. View at Google Scholar · View at Scopus
  15. L. A. Simons, “Interrelations of lipids and lipoproteins with coronary artery disease mortality in 19 countries,” American Journal of Cardiology, vol. 57, no. 14, pp. 5G–10G, 1986. View at Google Scholar · View at Scopus
  16. A. C. Carvalho, R. W. Colman, and R. S. Lees, “Platelet function in hyperlipoproteinemia,” The New England Journal of Medicine, vol. 290, no. 8, pp. 434–438, 1974. View at Google Scholar · View at Scopus
  17. E. Tremoli, G. Folco, E. Agradi, and C. Galli, “Platelet thromboxanes and serum-cholesterol,” Lancet, vol. 1, no. 8107, pp. 107–108, 1979. View at Google Scholar · View at Scopus
  18. P. Golino, P. R. Maroko, and T. E. Carew, “Efficacy of platelet depletion in counteracting the detrimental effect of acute hypercholesterolemia on infarct size and the no-reflow phenomenon in rabbits undergoing coronary artery occlusion-reperfusion,” Circulation, vol. 76, no. 1, pp. 173–180, 1987. View at Google Scholar · View at Scopus
  19. J. J. Badimon, L. Badimon, V. T. Turitto, and V. Fuster, “Platelet deposition at higher shear rates is enhanced by high plasma cholesterol levels. In vivo study in the rabbit model,” Arteriosclerosis and Thrombosis, vol. 11, no. 2, pp. 395–402, 1991. View at Google Scholar · View at Scopus
  20. L. A. Harker and W. Hazzard, “Platelet kinetic studies in patients with hyperlipoproteinemia: effects of clofibrate therapy,” Circulation, vol. 60, no. 3, pp. 492–496, 1979. View at Google Scholar · View at Scopus
  21. M. L. Zucker, C. Trowbridge, P. Krehbiel et al., “Platelet function in hypercholesterolemics before and after hypolipidemic drug therapy,” Haemostasis, vol. 16, no. 1, pp. 57–64, 1986. View at Google Scholar · View at Scopus
  22. N. N. Kahn and A. K. Sinha, “Stimulation of prostaglandin E1 binding to human blood platelet membrane by insulin and the activation of adenylate cyclase,” Journal of Biological Chemistry, vol. 265, no. 9, pp. 4976–4981, 1990. View at Google Scholar · View at Scopus
  23. S. J. Shattil, R. J. Anaya-Galindo, J. Bennett, R. W. Colman, and R. A. Cooper, “Platelet hypersensitivity induced by cholesterol incorporation,” The Journal of Clinical Investigation, vol. 55, pp. 636–643, 1975. View at Google Scholar
  24. M. J. Stuart, J. M. Gerrard, and J. G. White, “Effect of cholesterol on production of thromboxane B2 by platelets in vitro,” The New England Journal of Medicine, vol. 302, no. 1, pp. 6–10, 1980. View at Google Scholar · View at Scopus
  25. P. Woerner and H. Patscheke, “Hyperreactivity by an enhancement of the arachidonate pathway of platelets treated with cholesterol-rich phospholipid-dispersions,” Thrombosis Research, vol. 18, no. 3-4, pp. 439–451, 1980. View at Google Scholar · View at Scopus
  26. R. A. Cooper, “Abnormalities of cell membrane fluidity in the pathogenesis of disease,” The New England Journal of Medicine, vol. 297, no. 7, pp. 371–377, 1977. View at Google Scholar · View at Scopus
  27. L. K. Curtiss and E. F. Plow, “Interaction of plasma lipoproteins with human platelets,” Blood, vol. 64, no. 2, pp. 365–374, 1984. View at Google Scholar · View at Scopus
  28. S. Yia-Herttuala, W. Palinski, M. E. Rosenfeld et al., “Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man,” Journal of Clinical Investigation, vol. 84, no. 4, pp. 1086–1095, 1989. View at Google Scholar · View at Scopus
  29. M. L. Selley, J. A. McGuiness, and N. G. Ardlie, “The effect of cholesterol oxidation products on human platelet aggregation,” Thrombosis Research, vol. 83, no. 6, pp. 449–461, 1996. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Kanazawa, H. Kaneko, T. Uemura et al., “Acceleration of platelet aggregability due to modulation of native LDL,” Circulation Research, vol. 66, no. 4, pp. 1166–1169, 1990. View at Google Scholar · View at Scopus
  31. A. C. A. Carvalho and R. S. Lees, “Platelets, intravascular coagulation and fibrinolysis in hyperlipidaemias: relationship to thrombo-embolic complications,” Acta Medica Scandinavica, vol. 642, pp. 101–112, 1980. View at Google Scholar · View at Scopus
  32. A. K. Sinha, S. J. Shattil, and R. W. Colman, “Cyclic AMP metabolism in cholesterol rich platelets,” Journal of Biological Chemistry, vol. 252, no. 10, pp. 3310–3314, 1977. View at Google Scholar · View at Scopus
  33. A. Strano, G. Davi, and M. Averna, “Platelet sensitivity to prostacyclin and thromboxane production in hyperlipidemic patients,” Thrombosis and Haemostasis, vol. 48, no. 1, pp. 18–20, 1982. View at Google Scholar · View at Scopus
  34. A. Nordoy, B. Svensson, D. Wiebe, and J. C. Hoak, “Lipoproteins and the inhibitory effect of human endothelial cells on platelet function,” Circulation Research, vol. 43, no. 4, pp. 527–534, 1978. View at Google Scholar · View at Scopus
  35. H. Shimokawa and P. M. Vanhoutte, “Impaired endothelium-dependent relaxation to aggregating platelets and related vasoactive substances in porcine coronary arteries in hypercholesterolemia and atherosclerosis,” Circulation Research, vol. 64, no. 5, pp. 900–914, 1989. View at Google Scholar · View at Scopus
  36. I. Perrotta, E. Brunelli, A. Sciangula et al., “Inducible and endothelial nitric oxide synthase expression in human atherogenesis: an immunohistochemical and ultrastructural study,” Cardiovascular Pathology, vol. 18, no. 6, pp. 361–368, 2009. View at Google Scholar