Table of Contents
ISRN Immunology
Volume 2011, Article ID 230130, 13 pages
http://dx.doi.org/10.5402/2011/230130
Research Article

Abscopal” Effect of Radiation Therapy Combined with Immune-Therapy Using IFN-γ Gene Transfected Syngeneic Tumor Cells, in Rats with Bilateral Implanted N29 Tumors

1Department of Medical Radiation Physics, Lund University, 221 85 Lund, Sweden
2Rausing Laboratory, Biomedical Centre, Lund University, 221 85 Lund, Sweden
3Department of Neurosurgery, Lund University, 221 85 Lund, Sweden
4Department of Tumor Immunology, Lund University, 221 85 Lund, Sweden

Received 22 June 2011; Accepted 7 August 2011

Academic Editors: A. Clayton, S.-I. Fujii, F. Granucci, and A. Porgador

Copyright © 2011 Bertil R. R. Persson et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. M. Kaminski, E. Shinohara, J. B. Summers, K. J. Niermann, A. Morimoto, and J. Brousal, “The controversial abscopal effect,” Cancer Treatment Reviews, vol. 31, no. 3, pp. 159–172, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Takaya, Y. Niibe, S. Tsunoda et al., “Abscopal effect of radiation on toruliform para-aortic lymph node metastases of advanced uterine cervical carcinoma—a case report,” Anticancer Research, vol. 27, no. 1, pp. 499–503, 2007. View at Google Scholar · View at Scopus
  3. H. Suit, “The gray lecture 2001: coming technical advances in radiation oncology,” International Journal of Radiation Oncology Biology Physics, vol. 53, no. 4, pp. 798–809, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. S. C. Formenti and S. Demaria, “Systemic effects of local radiotherapy,” The Lancet Oncology, vol. 10, no. 7, pp. 718–726, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Demaria, B. Ng, M. L. Devitt et al., “Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated,” International Journal of Radiation Oncology Biology Physics, vol. 58, no. 3, pp. 862–870, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. B. R.R. Persson, C. B. Koch, G. Grafstrom, C. Ceberg, and L. G. Salford, “Abscopal regression of subcutaneously implanted N29 rat glioma after treatment of the contra-lateral tumors with pulsed electric fields (PEF) or radiation therapy (RT) and their combinations (PEF+RT),” Cancer Therapy, vol. 2, pp. 533–548, 2004. View at Google Scholar
  7. B. R.R. Persson, C. B. Koch, G. Grafstrom, C. Ceberg, and L. G. Salford, “Abscopaleffect in subcutaneously implanted tumors (N29 glioma) in rats treated with combined radiation therapy; and/or immunization with tumor cells,” in Proceedings of the 55th Annual Meeting of the Radiation Research Society, p. PS5.11, Savannah Ga, USA, 2009.
  8. H. Nagasawa and J. B. Little, “Unexpected sensitivity to the induction of mutations by very low doses of alpha-particle radiation: evidence for a bystander effect,” Radiation Research, vol. 152, no. 5, pp. 552–557, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Nagasawa and J. B. Little, “Induction of sister chromatid exchanges by extremely low doses of α- particles,” Cancer Research, vol. 52, no. 22, pp. 6394–6396, 1992. View at Google Scholar · View at Scopus
  10. C. Mothersill and C. Seymour, “Radiation-induced bystander and other non-targeted effects: novel intervention points in cancer therapy?” Current Cancer Drug Targets, vol. 6, no. 5, pp. 447–454, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Mothersill and C. Seymour, “Radiation-induced bystander effects: past history and future directions,” Radiation Research, vol. 155, no. 6, pp. 759–767, 2001. View at Google Scholar · View at Scopus
  12. C. Mothersill and C. Seymour, “Radiation-induced bystander effects and adaptive responses—the Yin and Yang of low dose radiobiology?” Mutation Research—Fundamental and Molecular Mechanisms of Mutagenesis, vol. 568, no. 1, pp. 121–128, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. E. I. Azzam, S. M. de Toledo, and J. B. Little, “Stress signaling from irradiated to non-irradiated cells,” Current Cancer Drug Targets, vol. 4, no. 1, pp. 53–64, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. M. E. Peters, M. M. Shareef, S. Gupta et al., “Potential utilization of bystander/abscopal-mediated signal transduction events in the treatment of solid tumors,” Current Signal Transduction Therapy, vol. 2, no. 2, pp. 129–143, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. A. R. Snyder, “Review of radiation-induced bystander effects,” Human and Experimental Toxicology, vol. 23, no. 2, pp. 87–89, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Kusmartsev and D. I. Gabrilovich, “Immature myeloid cells and cancer-associated immune suppression,” Cancer Immunology, Immunotherapy, vol. 51, no. 6, pp. 293–298, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. C. A. Waldren, “Classical radiation biology dogma, bystander effects and paradigm shifts,” Human and Experimental Toxicology, vol. 23, no. 2, pp. 95–100, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Rzeszowska-Wolny, W. M. Przybyszewski, and M. Widel, “Ionizing radiation-induced bystander effects, potential targets for modulation of radiotherapy,” European Journal of Pharmacology, vol. 625, no. 1–3, pp. 156–164, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Burdak-Rothkamm and K. M. Prise, “New molecular targets in radiotherapy: DNA damage signalling and repair in targeted and non-targeted cells,” European Journal of Pharmacology, vol. 625, no. 1–3, pp. 151–155, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Kusmartsev and D. I. Gabrilovich, “Role of immature myeloid cells in mechanisms of immune evasion in cancer,” Cancer Immunology, Immunotherapy, vol. 55, no. 3, pp. 237–245, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Antoniades, L. W. Brady, and D. A. Lightfoot, “Lymphangiographic demonstration of the abscopal effect in patients with malignant lymphomas,” International Journal of Radiation Oncology Biology Physics, vol. 2, no. 1-2, pp. 141–147, 1977. View at Google Scholar · View at Scopus
  22. G. Ehlers and M. Fridman, “Abscopal effect of radiation in papillary adenocarcinoma,” British Journal of Radiology, vol. 46, no. 543, pp. 220–222, 1973. View at Google Scholar · View at Scopus
  23. D. P. Kingsley, “An interesting case of possible abscopal effect in malignant melanoma,” British Journal of Radiology, vol. 48, no. 574, pp. 863–866, 1975. View at Google Scholar · View at Scopus
  24. M. P. Nobler, “The abscopal effect in malignant lymphoma and its relationship to lymphocyte circulation,” Radiology, vol. 93, no. 2, pp. 410–412, 1969. View at Google Scholar · View at Scopus
  25. K. Ohba, K. Omagari, T. Nakamura et al., “Abscopal regression of hepatocellular carcinoma after radiotherapy for bone metastasis,” Gut, vol. 43, no. 4, pp. 575–577, 1998. View at Google Scholar · View at Scopus
  26. G. J. Rees, “Abscopal regression in lymphoma: a mechanism in common with total body irradiation?” Clinical Radiology, vol. 32, no. 4, pp. 475–480, 1981. View at Google Scholar · View at Scopus
  27. G. J. Rees and C. M. Ross, “Abscopal regression following radiotherapy for adenocarcinoma,” British Journal of Radiology, vol. 56, no. 661, pp. 63–66, 1983. View at Google Scholar · View at Scopus
  28. R. L. Sham, “The abscopal effect and chronic lymphocytic leukemia,” American Journal of Medicine, vol. 98, no. 3, pp. 307–308, 1995. View at Publisher · View at Google Scholar · View at Scopus
  29. S. E. Cotter, G. P. Dunn, K. M. Collins et al., “Abscopal effect in a patient with metastatic Merkel cell carcinoma following radiation therapy,” Journal of Investigative Dermatology, vol. 130, p. 688, 2010. View at Google Scholar
  30. P. Wersäll, H. Blomgren, P. Pisa, I. Lax, K. M. Kälkner, and C. Svedman, “Regression of non-irradiated metastases after extracranial stereotactic radiotherapy in metastatic renal cell carcinoma,” Acta Oncologica, vol. 45, no. 4, pp. 493–497, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. R. J. Mole, “Whole body irradiation-radiobiology or medicine?” The British Journal of Radiology, vol. 26, no. 305, pp. 234–241, 1953. View at Google Scholar · View at Scopus
  32. R. M. Macklis, P. M. Mauch, S. J. Burakoff, and B. R. Smith, “Lymphoid irradiation results in long-term increases in natural killer cells in patients treated for Hodgkins-disease,” Cancer, vol. 69, no. 3, pp. 778–783, 1992. View at Google Scholar · View at Scopus
  33. A. Uchida, Y. Mizutani, M. Nagamuta, and M. Ikenaga, “Effects of X-ray irradiation on natural killer (NK) cell system. 2. Increased sensitivity to natural killer cytotoxic factor (NKCF),” Immunopharmacology and Immunotoxicology, vol. 11, no. 2-3, pp. 521–534, 1989. View at Google Scholar · View at Scopus
  34. K. M. Prise and J. M. O'Sullivan, “Radiation-induced bystander signalling in cancer therapy,” Nature Reviews Cancer, vol. 9, no. 5, pp. 351–360, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. S. C. Formenti, K. Friedman, K. Chao et al., “Abscopal response in irradiated patients: results of a proof of principle trial,” in Proceedings of the 50th Annual Meeting of the American-Society-for-Therapeutic-Radiology-and Oncology, Elsevier Science, Boston, Mass, USA, 2008.
  36. S. Teitz-Tennenbaum, Q. Li, R. Okuyama et al., “Mechanisms involved in radiation enhancement of intratumoral dendritic cell therapy,” Journal of Immunotherapy, vol. 31, no. 4, pp. 345–358, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. B. R. R. Persson, C. B. Koch, G. Grafström et al., “Survival of rats with N29 brain tumors after irradiation with 5 or 15 Gy and immunization with IFN-γ secreting tumor cells,” in Proceedings of the 1st International Conference on BioMedical Engineering and Informatics (BMEI '08), vol. 2, IEEE Computer Society, Hainan, China, 2008.
  38. B. R. R. Persson, C. B. Koch, G. Grafström et al., “Radiation immunomodulatory gene tumor therapy of rats with intracerebral glioma tumors,” Radiation Research, vol. 173, no. 4, pp. 433–440, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. B. R. R. Persson, C. B. Koch, G. Grafström, C. Ceberg, B. Widegren, and L. Salford, “Abscopaleffect in subcutaneously implanted tumors (N29 glioma) in rats treated with combined radiation therapy; and/or immunization with tumor cells,” in Proceedings of the 55th Annual Meeting of the Radiation Research Society, Savannah, Ga, USA, 2009.
  40. E. Visse, P. Siesjö, B. Widegren, and H. O. Sjögren, “Regression of intracerebral rat glioma isografts by therapeutic subcutaneous immunization with interferon-γ, interleukin-7, or B7-1-transfected tumor cells,” Cancer Gene Therapy, vol. 6, no. 1, pp. 37–44, 1999. View at Google Scholar · View at Scopus
  41. B. R. R. Persson, C. B. Koch, G. Grafström, P. E. Engström, and L. G. Salford, “A model for evaluating therapeutic response of combined cancer treatment modalities: applied to treatment of subcutaneously implanted brain tumors (N32 and N29) in Fischer rats with pulsed electric fields (PEF) and (CO)-C-60-gamma radiation (RT),” Technology in Cancer Research and Treatment, vol. 2, no. 5, pp. 459–470, 2003. View at Google Scholar · View at Scopus
  42. M. R. Graf, R. M. Prins, W. T. Hawkins, and R. E. Merchant, “Irradiated tumor cell vaccine for treatment of an established glioma. I. Successful treatment with combined radiotherapy and cellular vaccination,” Cancer Immunology, Immunotherapy, vol. 51, no. 4, pp. 179–189, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. R. M. Prins, G. P. Scott, R. E. Merchant, and M. R. Graf, “Irradiated tumor cell vaccine for treatment of an established glioma. II. Expansion of myeloid suppressor cells that promote tumor progression,” Cancer Immunology, Immunotherapy, vol. 51, no. 4, pp. 190–199, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. K. Lumniczky, S. Desaknai, L. Mangel et al., “Local tumor irradiation augments the antitumor effect of cytokine-producing autologous cancer cell vaccines in a murine glioma model,” Cancer Gene Therapy, vol. 9, no. 1, pp. 44–52, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Z. Dewan, A. E. Galloway, N. Kawashima et al., “Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody,” Clinical Cancer Research, vol. 15, no. 17, pp. 5379–5388, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. D. I. Gabrilovich and S. Nagaraj, “Myeloid-derived suppressor cells as regulators of the immune system,” Nature Reviews Immunology, vol. 9, no. 3, pp. 162–174, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. I. Emerit, R. Arutyunyan, N. Oganesian et al., “Radiation-induced clastogenic factors—anticlastogenic effect of Ginkgo biloba extract,” Free Radical Biology and Medicine, vol. 18, no. 6, pp. 985–991, 1995. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Haimovitz-Friedman, C. C. Kan, D. Ehleiter et al., “Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis,” Journal of Experimental Medicine, vol. 180, no. 2, pp. 525–535, 1994. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Sathishkumar, B. Boyanovsky, A. A. Karakashian et al., “Elevated sphingomyelinase activity and ceramide concentration in serum of patients undergoing high dose spatially fractionated radiation treatment—implications for endothelial apoptosis,” Cancer Biology and Therapy, vol. 4, no. 9, pp. 979–986, 2005. View at Google Scholar · View at Scopus
  50. Y. Goodman and M. P. Mattson, “Ceramide protects hippocampal neurons against excitotoxic and oxidative insults, and amyloid β-peptide toxicity,” Journal of Neurochemistry, vol. 66, no. 2, pp. 869–872, 1996. View at Publisher · View at Google Scholar
  51. W. D. Jarvis and S. Grant, “The role of ceramide in the cellular response to cytotoxic agents,” Current Opinion in Oncology, vol. 10, no. 6, pp. 552–559, 1998. View at Google Scholar · View at Scopus
  52. R. M. Laethem, Y. A. Hannun, S. Jayadev et al., “Increases in neutral, Mg2+-dependent and acidic, Mg2+-independent sphingomyelinase activities precede commitment to apoptosis and are not a consequence of caspase 3-like activity in Molt-4 cells in response to thymidylate synthase inhibition by GW1843,” Blood, vol. 91, no. 11, pp. 4350–4360, 1998. View at Google Scholar · View at Scopus
  53. C. Shao, V. Stewart, M. Folkard, B. D. Michael, and K. M. Prise, “Nitric oxide-mediated signaling in the bystander response of individually targeted glioma cells,” Cancer Research, vol. 63, no. 23, pp. 8437–8442, 2003. View at Google Scholar · View at Scopus
  54. T. Cook, Z. Wang, S. Alber et al., “Nitric oxide and ionizing radiation synergistically promote apoptosis and growth inhibition of cancer by activating p53,” Cancer Research, vol. 64, no. 21, pp. 8015–8021, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. Z. Wang, T. Cook, S. Alber et al., “Adenoviral gene transfer of the human inducible nitric oxide synthase gene enhances the radiation response of human colorectal cancer associated with alterations in tumor vascularity,” Cancer Research, vol. 64, no. 4, pp. 1386–1395, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. J. Worthington, “Development of radiation-inducible promoters for use in nitric oxide synthase gene therapy of cancer,” Journal of Gene Medicine, vol. 6, no. 9, p. 89, 2004. View at Google Scholar
  57. Y. Ilnytskyy, I. Koturbash, and O. Kovalchuk, “Radiation-induced bystander effects in vivo are epigenetically regulated in a tissue-specific manner,” Environmental and Molecular Mutagenesis, vol. 50, no. 2, pp. 105–113, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. K. Shiraishi, Y. Ishiwata, K. Nakagawa et al., “Enhancement of antitumor radiation efficacy and consistent induction of the abscopal effect in mice by ECI301, an active variant of macrophage inflammatory protein-1α,” Clinical Cancer Research, vol. 14, no. 4, pp. 1159–1166, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. L. Apetoh, F. Ghiringhelli, A. Tesniere et al., “Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy,” Nature Medicine, vol. 13, no. 9, pp. 1050–1059, 2007. View at Publisher · View at Google Scholar · View at Scopus