Table of Contents
ISRN Toxicology
Volume 2011 (2011), Article ID 250387, 6 pages
http://dx.doi.org/10.5402/2011/250387
Research Article

Toxicology Evaluation of Realgar-Containing Niu-Huang-Jie-Du Pian as Compared to Arsenicals in Cell Cultures and in Mice

1Key Lab of Basic Pharmacology, Zunyi Medical College, Zunyi 563000, China
2Chongqing Three Gorges Medical College, Chongqing 404120, China
3University of Kansas Medical Center, Kansas KS 66160, USA

Received 5 June 2011; Accepted 7 July 2011

Academic Editors: K. M. Erikson and A. I. Haza

Copyright © 2011 Jia-Wei Miao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Pharmacopoeia of China, Chemical Industry Press, Beijing, China, 2010.
  2. J. Liu, Y. F. Lu, Q. Wu, R. A. Goyer, and M. P. Waalkes, “Mineral arsenicals in traditional medicines: orpiment, realgar, and arsenolite,” Journal of Pharmacology and Experimental Therapeutics, vol. 326, no. 2, pp. 363–368, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Kumar, A. G. C. Nair, A. V. R. Reddy, and A. N. Garg, “Bhasmas: unique ayurvedic metallic-herbal preparations, chemical characterization,” Biological Trace Element Research, vol. 109, no. 3, pp. 231–254, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Ernst, “Toxic heavy metals and undeclared drugs in Asian herbal medicines,” Trends in Pharmacological Sciences, vol. 23, no. 3, pp. 136–139, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Cooper, B. Noller, D. Connell et al., “Public health risks from heavy metals and metalloids present in traditional Chinese medicines,” Journal of Toxicology and Environmental Health, Part A, vol. 70, no. 19, pp. 1694–1699, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. R. B. Saper, S. N. Kales, J. Paquin et al., “Heavy metal content of ayurvedic herbal medicine products,” JAMA—Journal of the American Medical Association, vol. 292, no. 23, pp. 2868–2873, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. J. J. Mao and K. Desai, “Metal content in ayurvedic medicines,” JAMA—Journal of the American Medical Association, vol. 301, no. 3, p. 271, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. Q. Wu, Y. F. Lu, J. Z. Shi, J. Liu, and J. S. Shi, “Chemical form of metals in traditional medicines underlines potential toxicity in cell cultures,” Journal of Ethnopharmacology, vol. 134, no. 3, pp. 839–843, 2011. View at Google Scholar
  9. Y. F. Lu, J. W. Yan, Q. Wu, J. Z. Shi, J. Liu, and J. S. Shi, “Realgar- and cinnabar-containing An-Gong-Niu-Huang Wan (AGNH) is much less acutely toxic than sodium arsenite and mercuric chloride,” Chemico-Biological Interactions, vol. 189, no. 1-2, pp. 134–140, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. F. Lu, Q. Wu, J. W. Yan, J. Z. Shi, J. Liu, and J. S. Shi, “Realgar, cinnabar and An-Gong-Niu-Huang Wan (AGNH) are much less chronically nephrotoxic than common arsenicals and mercurial,” Experimental Biology and Medicine, vol. 236, no. 2, pp. 233–239, 2011. View at Google Scholar
  11. Y. F. Lu, Q. Wu, S. X. Liang, J. W. Miao, J. S. Shi, and J. Liu, “Evaluation of hepatotoxicity potential of cinnabar-containing An-Gong-Niu-Huang Wan, a patent traditional Chinese medicine,” Regulatory Toxicology and Pharmacology, vol. 60, no. 2, pp. 206–211, 2011. View at Google Scholar
  12. J. Liu, S. X. Liang, Y. F. Lu, J. W. Miao, Q. Wu, and J. S. Shi, “Realgar and realgar-containing Liu-Shen-Wan are less acutely toxic than arsenite and arsenate,” Journal of Ethnopharmacology, no. 1, pp. 26–31, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. J. W. Miao, X. L. Liu, S. X. Liang et al., “Comparative study on acute toxicity of Niu-Huang-Jie-Du Tablets and other inorganic arsenic compounds,” Chinese Journal of Pharmacology and Toxicology, vol. 25, pp. 70–74, 2011. View at Google Scholar
  14. C. D. Klaassen, J. Liu, and S. Choudhuri, “Metallothionein: an intracellular protein to protect against cadmium toxicity,” Annual Review of Pharmacology and Toxicology, vol. 39, pp. 267–294, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Liu, M. B. Kadiiska, Y. Liu, T. Lu, W. Qu, and M. P. Waalkes, “Stress-related gene expression in mice treated with inorganic arsenicals,” Toxicological Sciences, vol. 61, no. 2, pp. 314–320, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. P. J. Dilda and P. J. Hogg, “Arsenical-based cancer drugs,” Cancer Treatment Reviews, vol. 33, no. 6, pp. 542–564, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Wu, Y. Shao, J. Liu, G. Chen, and P. C. Ho, “The medicinal use of realgar (As(4)S(4)) and its recent development as an anticancer agent,” Journal of Ethnopharmacology, vol. 35, pp. 595–602, 2011. View at Google Scholar
  18. ATSDR, Toxicological Profile for Arsenic, Agency for Toxic Substances and Disease Registry, Atlanta, Ga, USA, 2005.
  19. I. Koch, S. Sylvester, V. W. M. Lai, A. Owen, K. J. Reimer, and W. R. Cullen, “Bioaccessibility and excretion of arsenic in Niu Huang Jie Du Pian pills,” Toxicology and Applied Pharmacology, vol. 222, no. 3, pp. 357–364, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Lehman-McKeeman, “Paracelsus and formaldehyde 2010: the dose to the target organ makes the poison,” Toxicological Sciences, vol. 116, no. 2, pp. 361–363, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Kreppel, J. W. Bauman, J. Liu, J. M. McKim Jr., and C. D. Klaassen, “Induction of metallothionein by arsenicals in mice,” Fundamental and Applied Toxicology, vol. 20, no. 2, pp. 184–189, 1993. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Liu, Y.-P. Liu, R. A. Goyer, W. Achanzar, and M. P. Waalkes, “Metallothionein-I/II null mice are more sensitive than wild-type mice to the hepatotoxic and nephrotoxic effects of chronic oral or injected inorganic arsenicals,” Toxicological Sciences, vol. 55, no. 2, pp. 460–467, 2000. View at Google Scholar · View at Scopus
  23. L. Wang, G. B. Zhou, P. Liu et al., “Dissection of mechanisms of Chinese medicinal formula Realgar-Indigo naturalis as an effective treatment for promyelocytic leukemia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 12, pp. 4826–4831, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Wei, P. Liao, H. Wu et al., “Metabolic profiling studies on the toxicological effects of realgar in rats by (1)H NMR spectroscopy,” Toxicology and Applied Pharmacology, vol. 234, no. 3, pp. 314–325, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Zhang, S. H. Gao, C. F. Zhou, R. C. Lin, and C. H. Liu, “From Niu-Huang-Jie-Du Pian to safety evaluation of arsenic-containing traditional medicines,” ZhongGuoZhongYaoZaZhi, vol. 31, pp. 2010–2013, 2006. View at Google Scholar
  26. J. Liu, J. Z. Shi, L. M. Yu, R. A. Goyer, and M. P. Waalkes, “Mercury in traditional medicines: is cinnabar toxicologically similar to common mercurials?” Experimental Biology and Medicine, vol. 233, no. 7, pp. 810–817, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Z. Shi, F. Kang, Q. Wu, Y. F. Lu, J. Liu, and Y. J. Kang, “Cinnabar-containing Zhu-Sha-An-Sheng Wan is much less chronically nephrotoxic than mercury chloride and methylmercury in rats,” Toxicology Letters, vol. 200, pp. 194–200, 2011. View at Google Scholar