`ISRN Mathematical AnalysisVolume 2011, Article ID 276701, 13 pageshttp://dx.doi.org/10.5402/2011/276701`
Research Article

## Application of Spectral Methods to Boundary Value Problems for Differential Equations

Faculty of Tourism and Commercial Management Constanta, “Dimitrie Cantemir” Christian University Bucharest, Romania

Received 13 January 2011; Accepted 12 March 2011

Copyright © 2011 Ene Petronela. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. P. Catană and D. Pascali, “On semilinear spectral theory,” in Proceedings of the 6th Congress of Romanian Mathematicians, vol. 1, pp. 331–335, Scientific Contributions, 2009.
2. P. Catană, “Solvability of nonlinear equations,” Mathematical Reports-Romanian Academy, vol. 9(59), no. 3, pp. 249–256, 2007.
3. P. Catană, “Feng's spectral theory for nonlinear operators,” Scientific Annals of Maritime University of Constanta, vol. 10, 2007.
4. A. Rhodius, “Über numerische wertebereiche und spektralwertabschätzungen,” Acta Scientiarum Mathematicarum, vol. 47, no. 3–4, pp. 465–470, 1984.
5. R. I. Kachurovskij, “Regular points, spectrum and eigenfunction of nonlinear operators,” Soviet Mathematics—Doklady, vol. 10, pp. 1101–1105, 1969.
6. P. Catană, “Different spectra for nonlinear operators,” Scientific Annals of “Ovidius” University of Constanta, Series Mathematica, vol. 13, no. 1, pp. 5–14, 2005.
7. J. Appell, E. De Pascale, and A. Vignoli, “A comparison of different spectra for nonlinear operators,” Nonlinear Analysis: Theory, Methods & Applications, vol. 40, no. 1–8, pp. 73–90, 2000.
8. J. Appell and M. Dörfner, “Some spectral theory for nonlinear operators,” Nonlinear Analysis: Theory, Methods & Applications, vol. 28, no. 12, pp. 1955–1976, 1997.
9. P. Catană, A spectral theory for nonlinear maps, Ph.D. thesis, “Ovidius” University of Constanta, Romania, 2006.
10. M. Furi, M. Martelli, and A. Vignoli, “Contributions to the spectral theory for nonlinear operators in Banach spaces,” Annali di Matematica Pura ed Applicata, vol. 118, pp. 229–294, 1978.
11. M. Furi, M. Martelli, and A. Vignoli, “Stably-solvable operators in Banach spaces,” Atti della Accademia Nazionale dei Lincei. Rendiconti. Classe di Scienze Fisiche, Matematiche e Naturali, vol. 60, no. 1, pp. 21–26, 1976.
12. W. Feng, “A new spectral theory for nonlinear operators and its applications,” Abstract and Applied Analysis, vol. 2, no. 1–2, pp. 163–183, 1997.
13. J. Appell, E. De Pascale, and A. Vignoli, Nonlinear Spectral Theory, vol. 10 of W. de Gruyter Series in Nonlinear Analysis and Applications, Walter de Gruyter & Co., Berlin, Germany, 2004.
14. P. Catană, “The semilinear Feng and FMV spectra,” Balkan Journal of Geometry and Its Applications, vol. 12, no. 2, pp. 21–31, 2007.