Table of Contents
ISRN Ecology
Volume 2011 (2011), Article ID 345851, 15 pages
http://dx.doi.org/10.5402/2011/345851
Research Article

Practice of Mass Transport Model Application for Biogeochemical Redox Process in Aquifer

1Laboratory of Water Environment Engineering, International Education Center, Kyushu University, 6-10-1 Hakozaki Higashi-ku, Fukuoka 812-8581, Japan
2Geosphere Environmental Technology Corp. 6F, Hinoki Building, 2-1 Kanda, Ogawamachi, Chiyoda-ku, Tokyo 101-0052, Japan
3Kyushu University, 1-4-5 Izumigaoka, Munakata City, Fukuoka 811-4162, Japan

Received 15 July 2011; Accepted 17 August 2011

Academic Editor: P. Grenni

Copyright © 2011 Osama Eljamal et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. A. J. Appelo and D. Postma, Geochemistry, Groundwater and Pollution, Balkema Publishers, 2nd edition, 2006.
  2. W. Kinzelbach and W. Schäfer, “Modelling and design of in situ bioremediation measures,” in Proceedings of the International Conference on Groundwater Quality Management (GQM '94), IAHS Publication no. 220, pp. 399–412, Tallinn, Estonia, September 1994. View at Scopus
  3. H. J. Lensing, M. Vogt, and B. Herrling, “Modeling of biologically mediated redox processes in the subsurface,” Journal of Hydrology, vol. 159, no. 1-4, pp. 125–143, 1994. View at Google Scholar · View at Scopus
  4. K. S. Hunter, Y. Wang, and P. Van Cappellen, “Kinetic modeling of microbially-driven redox chemistry of subsurface environments: coupling transport, microbial metabolism and geochemistry,” Journal of Hydrology, vol. 209, no. 1–4, pp. 53–80, 1998. View at Publisher · View at Google Scholar · View at Scopus
  5. O. Eljamal, K. Jinno, and T. Hosokawa, “Modeling of solute transport with bioremediation processes using sawdust as a matrix,” Water, Air, and Soil Pollution, vol. 195, no. 1–4, pp. 115–127, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. E. D. P. Perera, K. Jinno, and Y. Hiroshiro, “Bacteria-mediated reduction and precipitation of Fe(OH)3 and FeS in the subsurface of a coastal aquifer: a numerical investigation,” Water Quality, Exposure and Health, vol. 2, no. 1, pp. 15–30, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Schäfer, W. Schäfer, and W. Kinzelbach, “Simulation of reactive processes related to biodegradation in aquifers. 1. Structure of the three-dimensional reactive transport model,” Journal of Contaminant Hydrology, vol. 31, no. 1-2, pp. 167–186, 1998. View at Publisher · View at Google Scholar
  8. L. A. Schipper, G. F. Barkle, and M. Vojvodic-Vukovic, “Maximum rates of nitrate removal in a denitrification wall,” Journal of Environmental Quality, vol. 34, no. 4, pp. 1270–1276, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. B. E. Rittmann and P. L. McCarty, Environmental Biotechnology: Principles and Applications, McGraw-Hill, New York, NY, USA, 2001.
  10. D. Schäfer, W. Schäfer, and W. Kinzelbach, “Simulation of reactive processes related to biodegradation in aquifers. 2. Model application to a column study on organic carbon degradation,” Journal of Contaminant Hydrology, vol. 31, no. 1-2, pp. 187–209, 1998. View at Publisher · View at Google Scholar · View at Scopus
  11. T. H. Christensen, P. L. Bjerg, S. A. Banwart, R. Jakobsen, G. Heron, and H. J. Albrechtsen, “Characterization of redox conditions in groundwater contaminant plumes,” Journal of Contaminant Hydrology, vol. 45, no. 3-4, pp. 165–241, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Guerra, K. Jinno, Y. Hiroshiro, and K. Nakamura, “Multi-component solute transport model with cation exchange under redox environment and its application for designing the slow infiltration setup,” Memoirs of the Faculty of Engineering, Kyushu University, vol. 64, no. 1, pp. 78–100, 2004. View at Google Scholar · View at Scopus
  13. K. Jinno, T. Hosokawa, Y. Hiroshiro, and M. Ohgushi, “Mixing of fresh and salt groundwater in a sandy beach using pipe draining to extend the unsaturated zone,” in Proceedings of the 3rd International Conference on Future Groundwater Resources at Risk, pp. 641–648, Lisbon, Portugal, 2001.