Table of Contents
ISRN Nanotechnology
Volume 2011, Article ID 385480, 7 pages
http://dx.doi.org/10.5402/2011/385480
Research Article

Extracellular Biosynthesis of Silver Nanoparticles Using Escherichia coli ATCC 8739, Bacillus subtilis ATCC 6633, and Streptococcus thermophilus ESh1 and Their Antimicrobial Activities

1Bacteriology Unit, Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
2Biotechnology Department, Faculty of Science, Taif University, P.O. Box 888, Taif 21974, Saudi Arabia
3Biological Sciences Department, Faculty of Science and Art, King Abdulaziz University, Rabigh Campus, P.O. Box 344, Rabigh 21911, Saudi Arabia

Received 26 April 2011; Accepted 2 June 2011

Academic Editors: R. Jin and Y. Joseph

Copyright © 2011 Abd El-Raheem R. El-Shanshoury et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. J. Beveridge, M. N. Hughes, H. Lee et al., “Metal-microbe interactions: contemporary approaches,” Advances in Microbial Physiology, vol. 38, pp. 177–243, 1997. View at Google Scholar · View at Scopus
  2. K. Simkiss and K. M. Wilbur, “Biomineralization,” Cell Biology and Mineral Deposition, Academic. Press, New York, NY, USA, 1989. View at Google Scholar
  3. S. Mann and G. A. Ozin, “Synthesis of inorganic materials with complex form,” Nature, vol. 382, no. 6589, pp. 313–318, 1996. View at Publisher · View at Google Scholar · View at Scopus
  4. K. C. Bhainsa and S. F. D'Souza, “Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus,” Colloids and Surfaces B, vol. 47, no. 2, pp. 160–164, 2006. View at Publisher · View at Google Scholar · View at PubMed
  5. A. R. Shahverdi, S. Minaeian, H. R. Shahverdi, H. Jamalifar, and A. A. Nohi, “Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach,” Process Biochemistry, vol. 42, no. 5, pp. 919–923, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. A. K. Jha and K. Prasad, “Biosynthesis of metal and oxide nanoparticles using Lactobacilli from yoghurt and probiotic spore tablets,” Biotechnology Journal, vol. 5, no. 3, pp. 285–291, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. T. Klaus, R. Joerger, E. Olsson, and C. -G. Granqvist, “Silver-based crystalline nanoparticles, microbially fabricated,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 24, pp. 13611–13614, 1999. View at Publisher · View at Google Scholar
  8. B. Nair and T. Pradeep, “Coalescence of nanoclusters and formation of submicron crystallites assisted by lactobacillus strains,” Crystal Growth and Design, vol. 2, no. 4, pp. 293–298, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Klaus-Joerger, R. Joerger, E. Olsson, and C. G. Granqvist, “Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science,” Trends in Biotechnology, vol. 19, no. 1, pp. 15–20, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Ahmad, S. Senapati, M. I. Khan, R. Kumar, and M. Sastry, “Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, thermomonospora sp,” Langmuir, vol. 19, no. 8, pp. 3550–3553, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. S. S. Shankar, A. Rai, A. Ahmad, and M. Sastry, “Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth,” Journal of Colloid and Interface Science, vol. 275, no. 2, pp. 496–502, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. M. Kowshik, N. Deshmukh, W. Vogel, J. Urban, S. K. Kulkarni, and K. M. Paknikar, “Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode,” Biotechnology and Bioengineering, vol. 78, no. 5, pp. 583–588, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. G. I. H. Souza, P. D. Marcato, N. Duran, and E. Esposito, “Utilization of Fusarium oxysporum in the biosynthesis of silver nanoparticles and its antibacterial activities,” in Proceedings of the 9th National Meeting of Environmental Microbiology, p. 25, 2004.
  14. G. Cao, Nanostructures and Nanomaterials: Synthesis, Properties and Applications, Imperial College Press, Hackensack, NJ, USA, 2004.
  15. N. Durán, P. D. Marcato, O. L. Alves, G. I. H. De Souza, and E. Esposito, “Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium Oxysporum strains,” Journal of Nanobiotechnology, vol. 3, article 8, 2005. View at Publisher · View at Google Scholar · View at PubMed
  16. M. R. Bruins, S. Kapil, and F. W. Oehme, “Microbial resistance to metals in the environment,” Ecotoxicology and Environmental Safety, vol. 45, no. 3, pp. 198–207, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. T. J. Beveridge and R. G. E. Murray, “Sites of metal deposition in the cell wall of Bacillus subtilis,” Journal of Bacteriology, vol. 141, no. 2, pp. 876–887, 1980. View at Google Scholar · View at Scopus
  18. S. E. Luria and J. W. Burrous, “Hybridization between Escherichia coli and Shigella,” Journal of Bacteriology, vol. 74, no. 4, pp. 461–476, 1957. View at Google Scholar · View at Scopus
  19. S. Y. Lee, E. R. Vedamuthu, C. J. Washam, and G. W. Reinbold, “An agar medium for the differential enumeration of yogurt starter bacteria,” . Journal of Milcrobial Food Technology, vol. 37, no. 5, pp. 272–276, 1974. View at Google Scholar
  20. T. G. Pridham, P. Anderson, C. Foley, L. A. Lindenfelser, C. W. Hessetine, and R. G. Benedict, “A selection of media for maintenance and taxonomic study of streptomycetes,” Antibiotics Annual, pp. 947–953, 1956. View at Google Scholar
  21. A. S. Edelstein and R. C Cammarata, Eds., Nanomaterials: Synthesis, Properties and Applications, IOP Publication, Philadelphia, Pa, USA, 1996.
  22. R. A. Baker and J. H. Tatum, “Novel anthraquinones from stationary cultures of Fusarium oxysporum,” Journal of Fermentation and Bioengineering, vol. 85, no. 4, pp. 359–361, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Henglein, “Physicochemical properties of small metal particles in solution: “Microelectrode” reactions, chemisorption, composite metal particles, and the atom-to-metal transition,” Journal of Physical Chemistry, vol. 97, no. 21, pp. 5457–5471, 1993. View at Google Scholar · View at Scopus
  24. M. Sastry, V. Patil, and S. R. Sainkar, “Electrostatically controlled diffusion of carboxylic acid derivatized silver colloidal particles in thermally evaporated fatty amine films,” Journal of Physical Chemistry B, vol. 102, no. 8, pp. 1404–1410, 1998. View at Google Scholar
  25. H. W. Lu, S. H. Liu, X. L. Wang, X. F. Qian, J. Yin, and Z. K. Zhu, “Silver nanocrystals by hyperbranched polyurethane-assisted photochemical reduction of Ag+,” Materials Chemistry and Physics, vol. 81, no. 1, pp. 104–107, 2003. View at Publisher · View at Google Scholar
  26. M. Sastry, K. S. Mayya, and K. Bandyopadhyay, “pH Dependent changes in the optical properties of carboxylic acid derivatized silver colloidal particles,” Colloids and Surfaces A, vol. 127, no. 1–3, pp. 221–228, 1997. View at Publisher · View at Google Scholar
  27. Q. L. Feng, J. Wu, G. Q. Chen, F. Z. Cui, T. N. Kim, and J. O. Kim, “A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus,” Journal of Biomedical Materials Research, vol. 52, no. 4, pp. 662–668, 2000. View at Google Scholar · View at Scopus
  28. I. Sondi and E. Matijević, “Homogeneous precipitation by enzyme-catalyzed reactions. 2. Strontium and barium carbonates,” Chemistry of Materials, vol. 15, no. 6, pp. 1322–1326, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. I. Sondi and B. Salopek-Sondi, “Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria,” Journal of Colloid and Interface Science, vol. 275, no. 1, pp. 177–182, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. P. K. Stoimenov, R. L. Klinger, G. L. Marchin, and K. J. Klabunde, “Metal oxide nanoparticles as bactericidal agents,” Langmuir, vol. 18, no. 17, pp. 6679–6686, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. N. A. Amro, L. P. Kotra, K. Wadu-Mesthrige, A. Bulychev, S. Mobashery, and G. Y. Liu, “High-resolution atomic force microscopy studies of the Escherichia coli outer membrane: structural basis for permeability,” Langmuir, vol. 16, no. 6, pp. 2789–2796, 2000. View at Publisher · View at Google Scholar · View at Scopus