Table of Contents
ISRN Ecology
Volume 2011 (2011), Article ID 402647, 20 pages
http://dx.doi.org/10.5402/2011/402647
Review Article

Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation

1Analytical Environmental Chemistry Research Group, Department of Chemistry, Benue State University, Makurdi 970001, Nigeria
2Research Laboratory, GeoEnvironmental & Climate Change Adaptation Research Centre, University of Benin, Benin City 300283, Nigeria

Received 19 July 2011; Accepted 23 August 2011

Academic Editors: B. Montuelle and A. D. Steinman

Copyright © 2011 Raymond A. Wuana and Felix E. Okieimen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Khan, Q. Cao, Y. M. Zheng, Y. Z. Huang, and Y. G. Zhu, “Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China,” Environmental Pollution, vol. 152, no. 3, pp. 686–692, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. M. K. Zhang, Z. Y. Liu, and H. Wang, “Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice,” Communications in Soil Science and Plant Analysis, vol. 41, no. 7, pp. 820–831, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. GWRTAC, “Remediation of metals-contaminated soils and groundwater,” Tech. Rep. TE-97-01,, GWRTAC, Pittsburgh, Pa, USA, 1997, GWRTAC-E Series. View at Google Scholar
  4. T. A. Kirpichtchikova, A. Manceau, L. Spadini, F. Panfili, M. A. Marcus, and T. Jacquet, “Speciation and solubility of heavy metals in contaminated soil using X-ray microfluorescence, EXAFS spectroscopy, chemical extraction, and thermodynamic modeling,” Geochimica et Cosmochimica Acta, vol. 70, no. 9, pp. 2163–2190, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. D. C. Adriano, Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability and Risks of Metals, Springer, New York, NY, USA, 2nd edition, 2003.
  6. P. Maslin and R. M. Maier, “Rhamnolipid-enhanced mineralization of phenanthrene in organic-metal co-contaminated soils,” Bioremediation Journal, vol. 4, no. 4, pp. 295–308, 2000. View at Google Scholar · View at Scopus
  7. M. J. McLaughlin, B. A. Zarcinas, D. P. Stevens, and N. Cook, “Soil testing for heavy metals,” Communications in Soil Science and Plant Analysis, vol. 31, no. 11–14, pp. 1661–1700, 2000. View at Google Scholar · View at Scopus
  8. M. J. McLaughlin, R. E. Hamon, R. G. McLaren, T. W. Speir, and S. L. Rogers, “Review: a bioavailability-based rationale for controlling metal and metalloid contamination of agricultural land in Australia and New Zealand,” Australian Journal of Soil Research, vol. 38, no. 6, pp. 1037–1086, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. W. Ling, Q. Shen, Y. Gao, X. Gu, and Z. Yang, “Use of bentonite to control the release of copper from contaminated soils,” Australian Journal of Soil Research, vol. 45, no. 8, pp. 618–623, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Kabata-Pendias and H. Pendias, Trace Metals in Soils and Plants, CRC Press, Boca Raton, Fla, USA, 2nd edition, 2001.
  11. Q. Zhao and J. J. Kaluarachchi, “Risk assessment at hazardous waste-contaminated sites with variability of population characteristics,” Environment International, vol. 28, no. 1-2, pp. 41–53, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. N. S. Bolan, B.G. Ko, C.W.N. Anderson, and I. Vogeler, “Solute interactions in soils in relation to bioavailability and remediation of the environment,” in Proceedings of the 5th International Symposium of Interactions of Soil Minerals with Organic Components and Microorganisms, Pucón, Chile, November 2008.
  13. G. M. Pierzynski, J. T. Sims, and G. F. Vance, Soils and Environmental Quality, CRC Press, London, UK, 2nd edition, 2000.
  14. J. J. D'Amore, S. R. Al-Abed, K. G. Scheckel, and J. A. Ryan, “Methods for speciation of metals in soils: a review,” Journal of Environmental Quality, vol. 34, no. 5, pp. 1707–1745, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. B. J. Alloway, Heavy Metals in Soils, Blackie Academic and Professional, London, UK, 2nd edition, 1995.
  16. E. Lombi and M. H. Gerzabek, “Determination of mobile heavy metal fraction in soil: results of a pot experiment with sewage sludge,” Communications in Soil Science and Plant Analysis, vol. 29, no. 17-18, pp. 2545–2556, 1998. View at Google Scholar · View at Scopus
  17. G. Sposito and A. L. Page, “Cycling of metal ions in the soil environment,” in Metal Ions in Biological Systems, H. Sigel, Ed., vol. 18 of Circulation of Metals in the Environment, pp. 287–332, Marcel Dekker, Inc., New York, NY, USA, 1984. View at Google Scholar
  18. S. Kuo, P. E. Heilman, and A. S. Baker, “Distribution and forms of copper, zinc, cadmium, iron, and manganese in soils near a copper smelter,” Soil Science, vol. 135, no. 2, pp. 101–109, 1983. View at Google Scholar · View at Scopus
  19. M. Kaasalainen and M. Yli-Halla, “Use of sequential extraction to assess metal partitioning in soils,” Environmental Pollution, vol. 126, no. 2, pp. 225–233, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. N. T. Basta, J. A. Ryan, and R. L. Chaney, “Trace element chemistry in residual-treated soil: key concepts and metal bioavailability,” Journal of Environmental Quality, vol. 34, no. 1, pp. 49–63, 2005. View at Google Scholar · View at Scopus
  21. A. Scragg, Environmental Biotechnology, Oxford University Press, Oxford, UK, 2nd edition, 2006.
  22. M.M. Lasat, “Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues,” Journal of Hazardous Substances Research, vol. 2, pp. 1–25, 2000. View at Google Scholar
  23. L. H. P. Jones and S. C. Jarvis, “The fate of heavy metals,” in The Chemistry of Soil Processes, D. J. Green and M. H. B. Hayes, Eds., p. 593, John Wiley & Sons, New York, NY, USA, 1981. View at Google Scholar
  24. P. H. Raven, L. R. Berg, and G. B. Johnson, Environment, Saunders College Publishing, New York, NY, USA, 2nd edition, 1998.
  25. M. E. Sumner, “Beneficial use of effluents, wastes, and biosolids,” Communications in Soil Science and Plant Analysis, vol. 31, no. 11–14, pp. 1701–1715, 2000. View at Google Scholar · View at Scopus
  26. R. L. Chaney and D. P. Oliver, “Sources, potential adverse effects and remediation of agricultural soil contaminants,” in Contaminants and the Soil Environments in the Australia-Pacific Region, R. Naidu, Ed., pp. 323–359, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996. View at Google Scholar
  27. USEPA, “A plain english guide to the EPA part 503 biosolids rule,” USEPA Rep. 832/R-93/003, USEPA, Washington, DC, USA, 1994. View at Google Scholar
  28. K. Weggler, M. J. McLaughlin, and R. D. Graham, “Effect of Chloride in Soil Solution on the Plant Availability of Biosolid-Borne Cadmium,” Journal of Environmental Quality, vol. 33, no. 2, pp. 496–504, 2004. View at Google Scholar · View at Scopus
  29. M. L. A. Silveira, L. R. F. Alleoni, and , and L. R. G. Guilherme, “Biosolids and heavy metals in soils,” Scientia Agricola, vol. 60, no. 4, pp. 64–111, 2003. View at Google Scholar
  30. R. Canet, F. Pomares, F. Tarazona, and M. Estela, “Sequential fractionation and plant availability of heavy metals as affected by sewage sludge applications to soil,” Communications in Soil Science and Plant Analysis, vol. 29, no. 5-6, pp. 697–716, 1998. View at Google Scholar · View at Scopus
  31. S. V. Mattigod and A. L. Page, “Assessment of metal pollution in soil,” in Applied Environmental Geochemistry, pp. 355–394, Academic Press, London, UK, 1983. View at Google Scholar
  32. R. G. McLaren, L. M. Clucas, and M. D. Taylor, “Leaching of macronutrients and metals from undisturbed soils treated with metal-spiked sewage sludge. 3. Distribution of residual metals,” Australian Journal of Soil Research, vol. 43, no. 2, pp. 159–170, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Keller, S. P. McGrath, and S. J. Dunham, “Trace metal leaching through a soil-grassland system after sewage sludge application,” Journal of Environmental Quality, vol. 31, no. 5, pp. 1550–1560, 2002. View at Google Scholar · View at Scopus
  34. R. G. McLaren, L. M. Clucas, M. D. Taylor, and T. Hendry, “Leaching of macronutrients and metals from undisturbed soils treated with metal-spiked sewage sludge. 2. Leaching of metals,” Australian Journal of Soil Research, vol. 42, no. 4, pp. 459–471, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. S. C. Reed, R. W. Crites, and E. J. Middlebrooks, Natural Systems for Waste Management and Treatment, McGraw-Hill, New York, NY, USA, 2nd edition, 1995.
  36. J. Bjuhr, Trace Metals in Soils Irrigated with Waste Water in a Periurban Area Downstream Hanoi City, Vietnam, Seminar Paper, Institutionen för markvetenskap, Sveriges lantbruksuniversitet (SLU), Uppsala, Sweden, 2007.
  37. P. S. DeVolder, S. L. Brown, D. Hesterberg, and K. Pandya, “Metal bioavailability and speciation in a wetland tailings repository amended with biosolids compost, wood ash, and sulfate,” Journal of Environmental Quality, vol. 32, no. 3, pp. 851–864, 2003. View at Google Scholar · View at Scopus
  38. N. T. Basta and R. Gradwohl, “Remediation of heavy metal-contaminated soil using rock phosphate,” Better Crops, vol. 82, no. 4, pp. 29–31, 1998. View at Google Scholar
  39. L. A. Smith, J. L. Means, A. Chen et al., Remedial Options for Metals-Contaminated Sites, Lewis Publishers, Boca Raton, Fla, USA,, 1995.
  40. USEPA, Report: recent Developments for In Situ Treatment of Metals contaminated Soils, U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, 1996.
  41. J. Shiowatana, R. G. McLaren, N. Chanmekha, and A. Samphao, “Fractionation of arsenic in soil by a continuous-flow sequential extraction method,” Journal of Environmental Quality, vol. 30, no. 6, pp. 1940–1949, 2001. View at Google Scholar · View at Scopus
  42. J. Buekers, Fixation of cadmium, copper, nickel and zinc in soil: kinetics, mechanisms and its effect on metal bioavailability, Ph.D. thesis, Katholieke Universiteit Lueven, 2007, Dissertationes De Agricultura, Doctoraatsprooefschrift nr.
  43. D. B. Levy, K. A. Barbarick, E. G. Siemer, and L. E. Sommers, “Distribution and partitioning of trace metals in contaminated soils near Leadville, Colorado,” Journal of Environmental Quality, vol. 21, no. 2, pp. 185–195, 1992. View at Google Scholar · View at Scopus
  44. USDHHS, Toxicological profile for lead, United States Department of Health and Human Services, Atlanta, Ga, USA, 1999.
  45. S.E. Manahan, Toxicological Chemistry and Biochemistry, CRC Press, Limited Liability Company (LLC), 3rd edition, 2003.
  46. I. Raskin and B. D. Ensley, Phytoremediation of Toxic Metals:Using Plants to Clean Up the Environment, John Wiley & Sons, New York, NY, USA, 2000.
  47. NSC, Lead Poisoning, National Safety Council, 2009, http://www.nsc.org/news_resources/Resources/Documents/Lead_Poisoning.pdf.
  48. D. R. Baldwin and W. J. Marshall, “Heavy metal poisoning and its laboratory investigation,” Annals of Clinical Biochemistry, vol. 36, no. 3, pp. 267–300, 1999. View at Google Scholar · View at Scopus
  49. C.J. Rosen, Lead in the home garden and urban soil environment, Communication and Educational Technology Services, University of Minnesota Extension, 2002.
  50. P. Chrostowski, J. L. Durda, and K. G. Edelmann, “The use of natural processes for the control of chromium migration,” Remediation, vol. 2, no. 3, pp. 341–351, 1991. View at Google Scholar
  51. I. Bodek, W. J. Lyman, W. F. Reehl, and D. H. Rosenblatt, in Environmental Inorganic Chemistry: Properties, Processes and Estimation Methods, Pergamon Press, Elmsford, NY, USA, 1988.
  52. B. E. Davies and L. H. P. Jones, “Micronutrients and toxic elements,” in Russell's Soil Conditions and Plant Growth, A. Wild, Ed., pp. 781–814, John Wiley & Sons; Interscience, New York, NY, USA, 11th edition, 1988. View at Google Scholar
  53. K. M. Greany, An assessment of heavy metal contamination in the marine sediments of Las Perlas Archipelago, Gulf of Panama, M.S. thesis, School of Life Sciences Heriot-Watt University, Edinburgh, Scotland, 2005.
  54. P. G. C. Campbell, “Cadmium-A priority pollutant,” Environmental Chemistry, vol. 3, no. 6, pp. 387–388, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. VCI, Copper history/Future, Van Commodities Inc., 2011, http://trademetalfutures.com/copperhistory.html.
  56. C. E. Martínez and H. L. Motto, “Solubility of lead, zinc and copper added to mineral soils,” Environmental Pollution, vol. 107, no. 1, pp. 153–158, 2000. View at Publisher · View at Google Scholar · View at Scopus
  57. J. Eriksson, A. Andersson, and R. Andersson, “The state of Swedish farmlands,” Tech. Rep. 4778, Swedish Environmental Protection Agency, Stockholm, Sweden, 1997. View at Google Scholar
  58. M. Pourbaix, Atlas of Electrochemical Equilibria, Pergamon Press, New York, NY, USA, 1974, Translated from French by J.A. Franklin.
  59. A. P. Khodadoust, K. R. Reddy, and K. Maturi, “Removal of nickel and phenanthrene from kaolin soil using different extractants,” Environmental Engineering Science, vol. 21, no. 6, pp. 691–704, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. DPR-EGASPIN, Environmental Guidelines and Standards for the Petroleum Industry in Nigeria (EGASPIN), Department of Petroleum Resources, Lagos, Nigeria, 2002.
  61. A. Tessier, P. G. C. Campbell, and M. Blsson, “Sequential extraction procedure for the speciation of particulate trace metals,” Analytical Chemistry, vol. 51, no. 7, pp. 844–851, 1979. View at Google Scholar · View at Scopus
  62. A. M. Ure, PH. Quevauviller, H. Muntau, and B. Griepink, “Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of Commission of the European Communities,” International Journal of Environmental Analytical Chemistry, vol. 51, no. 1, pp. 35–151, 1993. View at Google Scholar
  63. D. M. DiToro, J. D. Mahony, D. J. Hansen, K. J. Scott, A. R. Carlson, and G. T. Ankley, “Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments,” Environmental Science and Technology, vol. 26, no. 1, pp. 96–101, 1992. View at Google Scholar · View at Scopus
  64. R. G. Riley, J. M. Zachara, and F. J. Wobber, “Chemical contaminants on DOE lands and selection of contaminated mixtures for subsurface science research,” US-DOE, Energy Resource Subsurface Science Program, Washington, DC, USA, 1992.
  65. NJDEP, Soil Cleanup Criteria, New Jersey Department of Environmental Protection, Proposed Cleanup Standards for Contaminated Sites, NJAC 7:26D, 1996.
  66. T. A. Martin and M. V. Ruby, “Review of in situ remediation technologies for lead, zinc and cadmium in soil,” Remediation, vol. 14, no. 3, pp. 35–53, 2004. View at Google Scholar
  67. S. K. Gupta, T. Herren, K. Wenger, R. Krebs, and T. Hari, “In situ gentle remediation measures for heavy metal-polluted soils,” in Phytoremediation of Contaminated Soil and Water, N. Terry and G. Bañuelos, Eds., pp. 303–322, Lewis Publishers, Boca Raton, Fla, USA, 2000. View at Google Scholar
  68. USEPA, “Treatment technologies for site cleanup: annual status report (12th Edition),” Tech. Rep. EPA-542-R-07-012, Solid Waste and Emergency Response (5203P), Washington, DC, USA, 2007. View at Google Scholar
  69. USEPA, “Recent developments for in situ treatment of metal contaminated soils,” Tech. Rep. EPA-542-R-97-004, USEPA, Washington, DC, USA, 1997. View at Google Scholar
  70. Y. Hashimoto, H. Matsufuru, M. Takaoka, H. Tanida, and T. Sato, “Impacts of chemical amendment and plant growth on lead speciation and enzyme activities in a shooting range soil: an X-ray absorption fine structure investigation,” Journal of Environmental Quality, vol. 38, no. 4, pp. 1420–1428, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  71. N. Finžgar, B. Kos, and D. Leštan, “Bioavailability and mobility of Pb after soil treatment with different remediation methods,” Plant, Soil and Environment, vol. 52, no. 1, pp. 25–34, 2006. View at Google Scholar · View at Scopus
  72. J. Boisson, M. Mench, J. Vangronsveld, A. Ruttens, P. Kopponen, and T. De Koe, “Immobilization of trace metals and arsenic by different soil additives: evaluation by means of chemical extractions,” Communications in Soil Science and Plant Analysis, vol. 30, no. 3-4, pp. 365–387, 1999. View at Google Scholar · View at Scopus
  73. E. Lombi, F. J. Zhao, G. Zhang et al., “In situ fixation of metals in soils using bauxite residue: chemical assessment,” Environmental Pollution, vol. 118, no. 3, pp. 435–443, 2002. View at Publisher · View at Google Scholar · View at Scopus
  74. C. O. Anoduadi, L. B. Okenwa, F. E. Okieimen, A. T. Tyowua, and E.G. Uwumarongie-Ilori, “Metal immobilization in CCA contaminated soil using laterite and termite mound soil. Evaluation by chemical fractionation,” Nigerian Journal of Applied Science, vol. 27, pp. 77–87, 2009. View at Google Scholar
  75. L. Q. Wang, L. Luo, Y. B Ma, D. P. Wei, and L. Hua, “In situ immobilization remediation of heavy metals-contaminated soils: a review,” Chinese Journal of Applied Ecology, vol. 20, no. 5, pp. 1214–1222, 2009. View at Google Scholar · View at Scopus
  76. F. R. Evanko and D. A. Dzombak, “Remediation of metals contaminated soils and groundwater,” Tech. Rep. TE-97-01, Groundwater Remediation Technologies Analysis Centre, Pittsburg, Pa, USA, 1997. View at Google Scholar
  77. E. M. Fawzy, “Soil remediation using in situ immobilisation techniques,” Chemistry and Ecology, vol. 24, no. 2, pp. 147–156, 2008. View at Publisher · View at Google Scholar · View at Scopus
  78. M. Farrell, W. T. Perkins, P. J. Hobbs, G. W. Griffith, and D. L. Jones, “Migration of heavy metals in soil as influenced by compost amendments,” Environmental Pollution, vol. 158, no. 1, pp. 55–64, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  79. P. Bishop, D. Gress, and J. Olafsson, “Cement stabilization of heavy metals:Leaching rate assessment,” in Industrial Wastes- Proceedings of the 14th Mid-Atlantic Industrial Waste Conference, Technomics, Lancaster, Pa, USA, 1982. View at Google Scholar
  80. W. Shively, P. Bishop, D. Gress, and T. Brown, “Leaching tests of heavy metals stabilized with Portland cement,” Journal of the Water Pollution Control Federation, vol. 58, no. 3, pp. 234–241, 1986. View at Google Scholar · View at Scopus
  81. USEPA, “Interference mechanisms in waste stabilization/solidification processes,” Tech. Rep. EPA/540/A5-89/004, United States Environmental Protection Agency, Office of Research and Development, Cincinnati, Ohio, USA, 1990. View at Google Scholar
  82. G. Guo, Q. Zhou, and L. Q. Ma, “Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils: a review,” Environmental Monitoring and Assessment, vol. 116, no. 1–3, pp. 513–528, 2006. View at Publisher · View at Google Scholar · View at PubMed
  83. J. R. Conner, Chemical Fixation and Solidification of Hazardous Wastes, Van Nostrand Reinhold, New York, NY, USA, 1990.
  84. USEPA, “Stabilization/solidification of CERCLA and RCRA wastes,” Tech. Rep. EPA/625/6-89/022, United States Environmental Protection Agency, Center for Environmental Research Information, Cincinnati, Ohio, USA, 1989. View at Google Scholar
  85. USEPA, “International waste technologies/geo-con in situ stabilization/solidification,” Tech. Rep. EPA/540/A5-89/004, United States Environmental Protection Agency, Office of Research and Development, Cincinnati, Ohio, USA, 1990. View at Google Scholar
  86. B. H. Jasperse and C. R. Ryan, “Stabilization and fixation using soil mixing,” in Proceedings of the ASCE Specialty Conference on Grouting, Soil Improvement, and Geosynthetics, ASCE Publications, Reston, Va, USA, 1992.
  87. C. R. Ryan and A. D. Walker, “Soil mixing for soil improvement,” in Proceedings of the 23rd Conference on In situ Soil Modification, Geo-Con, Inc., Louisville, Ky, USA, 1992.
  88. USEPA, “Vitrification technologies for treatment of Hazardous and radioactive waste handbook,” Tech. Rep. EPA/625/R-92/002, United States Environmental Protection Agency, Office of Research and Development, Washington, DC, USA, 1992. View at Google Scholar
  89. J. L. Buelt and L. E. Thompson, The In situ Vitrification Integrated Program: Focusing on an Innovative Solution on Environmental Restoration Needs, Battelle Pacific Northwest Laboratory, Richland, Wash, USA, 1992.
  90. A. Jang, Y. S. Choi, and I. S. Kim, “Batch and column tests for the development of an immobilization technology for toxic heavy metals in contaminated soils of closed mines,” Water Science and Technology, vol. 37, no. 8, pp. 81–88, 1998. View at Publisher · View at Google Scholar · View at Scopus
  91. G. Dermont, M. Bergeron, G. Mercier, and M. Richer-Laflèche, “Soil washing for metal removal: a review of physical/chemical technologies and field applications,” Journal of Hazardous Materials, vol. 152, no. 1, pp. 1–31, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  92. P. Wood, “Remediation methods for contaminated sites,” in Contaminated Land and Its Reclamation, R. Hester and R. Harrison, Eds., Royal Society of Chemistry, Cambridge, UK, 1997. View at Google Scholar
  93. GOC, “Site Remediation Technologies: A Reference Manual,” 2003, Contaminated Sites Working Group, Government of Canada, Ontario, Canada. View at Google Scholar
  94. R. W. Peters, “Chelant extraction of heavy metals from contaminated soils,” Journal of Hazardous Materials, vol. 66, no. 1-2, pp. 151–210, 1999. View at Publisher · View at Google Scholar · View at Scopus
  95. CLAIRE, “Understanding soil washing, contaminated land: applications in real environments,” Tech. Rep. TB13, 2007. View at Google Scholar
  96. M. Pearl and P. Wood, “Review of pilot and full scale soil washing plants,” Warren Spring Laboratory Report LR 1018, Department of the Environment, AEA Technology National Environmental Technology Centre, 1994, B551 Harwell, Oxfordshire, OX11 0RA. View at Google Scholar
  97. A. Gosselin, M. Blackburn, and M. Bergeron, Assessment Protocol of the applicability of ore-processing technology to Treat Contaminated Soils, Sediments and Sludges, prepared for Eco-Technology innovation Section, Eco-Technology Innovation Section, Technology Development and Demonstration Program, Environment Canada, Canada, 1999.
  98. A. P. Davis and I. Singh, “Washing of zinc(II) from contaminated soil column,” Journal of Environmental Engineering, vol. 121, no. 2, pp. 174–185, 1995. View at Publisher · View at Google Scholar · View at Scopus
  99. D. Gombert, “Soil washing and radioactive contamination,” Environmental Progress, vol. 13, no. 2, pp. 138–142, 1994. View at Google Scholar · View at Scopus
  100. R. S. Tejowulan and W. H. Hendershot, “Removal of trace metals from contaminated soils using EDTA incorporating resin trapping techniques,” Environmental Pollution, vol. 103, no. 1, pp. 135–142, 1998. View at Publisher · View at Google Scholar · View at Scopus
  101. USEPA, “Engineering bulletin: soil washing treatment,” Tech. Rep. EPA/540/2-90/017, Office of Emergency and Remedial Response, United States Environmental Protection Agency, Washington, DC, USA, 1990. View at Google Scholar
  102. A. L. Wood, D. C. Bouchard, M. L. Brusseau, and P. S. C. Rao, “Cosolvent effects on sorption and mobility of organic contaminants in soils,” Chemosphere, vol. 21, no. 4-5, pp. 575–587, 1990. View at Google Scholar · View at Scopus
  103. W. Chu and K. H. Chan, “The mechanism of the surfactant-aided soil washing system for hydrophobic and partial hydrophobic organics,” Science of the Total Environment, vol. 307, no. 1–3, pp. 83–92, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  104. Y. Gao, J. He, W. Ling, H. Hu, and F. Liu, “Effects of organic acids on copper and cadmium desorption from contaminated soils,” Environment International, vol. 29, no. 5, pp. 613–618, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  105. K. Maturi and K. R. Reddy, “Extractants for the removal of mixed contaminants from soils,” Soil and Sediment Contamination, vol. 17, no. 6, pp. 586–608, 2008. View at Publisher · View at Google Scholar · View at Scopus
  106. H. Zhang, Z. Dang, L. C. Zheng, and X. Y. Yi, “Remediation of soil co-contaminated with pyrene and cadmium by growing maize (Zea mays L.),” International Journal of Environmental Science and Technology, vol. 6, no. 2, pp. 249–258, 2009. View at Google Scholar · View at Scopus
  107. J. Yu and D. Klarup, “Extraction kinetics of copper, zinc, iron, and manganese from contaminated sediment using disodium ethylenediaminetetraacetate,” Water, Air, and Soil Pollution, vol. 75, no. 3-4, pp. 205–225, 1994. View at Google Scholar · View at Scopus
  108. R. Naidu and R. D. Harter, “Effect of different organic ligands on cadmium sorption by and extractability from soils,” Soil Science Society of America Journal, vol. 62, no. 3, pp. 644–650, 1998. View at Google Scholar · View at Scopus
  109. J. Labanowski, F. Monna, A. Bermond et al., “Kinetic extractions to assess mobilization of Zn, Pb, Cu, and Cd in a metal-contaminated soil: EDTA vs. citrate,” Environmental Pollution, vol. 152, no. 3, pp. 693–701, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  110. X. Ke, P. J. Li, Q. X. Zhou, Y. Zhang, and T. H. Sun, “Removal of heavy metals from a contaminated soil using tartaric acid,” Journal of Environmental Sciences, vol. 18, no. 4, pp. 727–733, 2006. View at Google Scholar · View at Scopus
  111. B. Sun, F. J. Zhao, E. Lombi, and S. P. McGrath, “Leaching of heavy metals from contaminated soils using EDTA,” Environmental Pollution, vol. 113, no. 2, pp. 111–120, 2001. View at Publisher · View at Google Scholar · View at Scopus
  112. R. A. Wuana, F. E. Okieimen, and J. A. Imborvungu, “Removal of heavy metals from a contaminated soil using organic chelating acids,” International Journal of Environmental Science and Technology, vol. 7, no. 3, pp. 485–496, 2010. View at Google Scholar · View at Scopus
  113. H. Farrah and W. F. Pickering, “Extraction of heavy metal ions sorbed on clays,” Water, Air, and Soil Pollution, vol. 9, no. 4, pp. 491–498, 1978. View at Google Scholar · View at Scopus
  114. B. J. W. Tuin and M. Tels, “Removing heavy metals from contaminated clay soils by extraction with hydrochloric acid, edta or hypochlorite solutions,” Environmental Technology, vol. 11, no. 11, pp. 1039–1052, 1990. View at Google Scholar · View at Scopus
  115. K. R. Reddy and S. Chinthamreddy, “Comparison of extractants for removing heavy metals from contaminated clayey soils,” Soil and Sediment Contamination, vol. 9, no. 5, pp. 449–462, 2000. View at Google Scholar · View at Scopus
  116. A. P. Khodadoust, K. R. Reddy, and K. Maturi, “Effect of different extraction agents on metal and organic contaminant removal from a field soil,” Journal of Hazardous Materials, vol. 117, no. 1, pp. 15–24, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  117. T. C. Chen and A. Hong, “Chelating extraction of lead and copper from an authentic contaminated soil using N-(2-acetamido)iminodiacetic acid and S-carboxymethyl-L-cysteine,” Journal of Hazardous Materials, vol. 41, no. 2-3, pp. 147–160, 1995. View at Publisher · View at Google Scholar · View at Scopus
  118. R. A. Wuana, F. E. Okieimen, and R. E. Ikyereve, “Removal of lead and copper from contaminated kaolin and bulk clay soils using acids and chelating agents,” Journal of Chemical Society of Nigeria, vol. 33, no. 1, pp. 213–219, 2008. View at Google Scholar
  119. S. D. Cunningham and D. W. Ow, “Promises and prospects of phytoremediation,” Plant Physiology, vol. 110, no. 3, pp. 715–719, 1996. View at Google Scholar · View at Scopus
  120. H. S. Helmisaari, M. Salemaa, J. Derome, O. Kiikkilä, C. Uhlig, and T. M. Nieminen, “Remediation of heavy metal-contaminated forest soil using recycled organic matter and native woody plants,” Journal of Environmental Quality, vol. 36, no. 4, pp. 1145–1153, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  121. R. L. Chaney, M. Malik, Y. M. Li et al., “Phytoremediation of soil metals,” Current Opinion in Biotechnology, vol. 8, no. 3, pp. 279–284, 1997. View at Publisher · View at Google Scholar · View at Scopus
  122. R. J. Henry, An Overview of the Phytoremediation of Lead and Mercury, United States Environmental Protection Agency Office of Solid Waste and Emergency Response Technology Innovation office, Washington, DC, USA, 2000.
  123. C. Garbisu and I. Alkorta, “Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment,” Bioresource Technology, vol. 77, no. 3, pp. 229–236, 2001. View at Publisher · View at Google Scholar · View at Scopus
  124. C. D. Jadia and M. H. Fulekar, “Phytotoxicity and remediation of heavy metals by fibrous root grass (sorghum),” Journal of Applied Biosciences, vol. 10, no. 1, pp. 491–499, 2008. View at Google Scholar
  125. M. Vysloužilová, P. Tlustoš, J. Száková, and D. Pavlíková, “As, Cd, Pb and Zn uptake by Salix spp. clones grown in soils enriched by high loads of these elements,” Plant, Soil and Environment, vol. 49, no. 5, pp. 191–196, 2003. View at Google Scholar · View at Scopus
  126. E. Lombi, F. J. Zhao, S. J. Dunham, and S. P. McGrath, “Phytoremediation of heavy metal-contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction,” Journal of Environmental Quality, vol. 30, no. 6, pp. 1919–1926, 2001. View at Google Scholar · View at Scopus
  127. M. Ghosh and S. P. Singh, “A review on phytoremediation of heavy metals and utilization of its byproducts,” Applied Ecology and Environmental Research, vol. 3, no. 1, pp. 1–18, 2005. View at Google Scholar · View at Scopus
  128. A. J. M. Baker and R. R. Brooks, “Terrestrial higher plants which hyperaccumulate metallic elements: a review of their distribution, ecology and phytochemistry,” Biorecovery, vol. 1, pp. 81–126, 1989. View at Google Scholar
  129. M. M. Lasat, “Phytoextraction of toxic metals: a review of biological mechanisms,” Journal of Environmental Quality, vol. 31, no. 1, pp. 109–120, 2002. View at Google Scholar · View at Scopus
  130. D. E. Salt, R. D. Smith, and I. Raskin, “Phytoremediation,” Annual Reviews in Plant Physiology & Plant Molecular Biology, vol. 49, pp. 643–668, 1998. View at Google Scholar
  131. S. Dushenkov, “Trends in phytoremediation of radionuclides,” Plant and Soil, vol. 249, no. 1, pp. 167–175, 2003. View at Publisher · View at Google Scholar · View at Scopus
  132. U. Schmidt, “Enhancing phytoextraction: the effect of chemical soil manipulation on mobility, plant accumulation and leaching of heavy metals,” Journal of Environmental Quality, vol. 32, no. 6, pp. 1939–1954, 2003. View at Google Scholar · View at Scopus
  133. B. Nowack, R. Schulin, and B. H. Robinson, “Critical assessment of chelant-enhanced metal phytoextraction,” Environmental Science and Technology, vol. 40, no. 17, pp. 5225–5232, 2006. View at Publisher · View at Google Scholar · View at Scopus
  134. M. W. H. Evangelou, M. Ebel, and A. Schaeffer, “Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents,” Chemosphere, vol. 68, no. 6, pp. 989–1003, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  135. J. W. Huang, J. Chen, W. R. Berti, and S. D. Cunningham, “Phytoremediadon of lead-contaminated soils: role of synthetic chelates in lead phytoextraction,” Environmental Science and Technology, vol. 31, no. 3, pp. 800–805, 1997. View at Publisher · View at Google Scholar · View at Scopus
  136. Saifullah, E. Meers, M. Qadir et al., “EDTA-assisted Pb phytoextraction,” Chemosphere, vol. 74, no. 10, pp. 1279–1291, 2009. View at Google Scholar
  137. Y. Xu, N. Yamaji, R. Shen, and J. F. Ma, “Sorghum roots are inefficient in uptake of EDTA-chelated lead,” Annals of Botany, vol. 99, no. 5, pp. 869–875, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  138. A. D. Vassil, Y. Kapulnik, I. Raskin, and D. E. Sait, “The role of EDTA in lead transport and accumulation by Indian mustard,” Plant Physiology, vol. 117, no. 2, pp. 447–453, 1998. View at Google Scholar · View at Scopus
  139. B. Kos and D. Leštan, “Chelator induced phytoextraction and in situ soil washing of Cu,” Environmental Pollution, vol. 132, no. 2, pp. 333–339, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  140. S. Tandy, K. Bossart, R. Mueller et al., “Extraction of heavy metals from soils using biodegradable chelating agents,” Environmental Science and Technology, vol. 38, no. 3, pp. 937–944, 2004. View at Publisher · View at Google Scholar · View at Scopus
  141. R. R. Brooks, M. F. Chambers, L. J. Nicks, and B. H. Robinson, “Phytomining,” Trends in Plant Science, vol. 3, no. 9, pp. 359–362, 1998. View at Publisher · View at Google Scholar · View at Scopus
  142. P. Zhuang, Z. H. Ye, C. Y. Lan, Z. W. Xie, and W. S. Shu, “Chemically assisted phytoextraction of heavy metal contaminated soils using three plant species,” Plant and Soil, vol. 276, no. 1-2, pp. 153–162, 2005. View at Publisher · View at Google Scholar · View at Scopus
  143. X. Zhang, H. Xia, Z. Li, P. Zhuang, and B. Gao, “Potential of four forage grasses in remediation of Cd and Zn contaminated soils,” Bioresource Technology, vol. 101, no. 6, pp. 2063–2066, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  144. L. A. Newman, S. E. Strand, N. Choe et al., “Uptake and biotransformation of trichloroethylene by hybrid poplars,” Environmental Science and Technology, vol. 31, no. 4, pp. 1062–1067, 1997. View at Publisher · View at Google Scholar · View at Scopus
  145. P. V. R. Iyer, T. R. Rao, and P. D. Grover, Biomass Thermochemical Characterization Characterization, Indian Institute of Technology, Delhi, India, 3rd edition, 2002.
  146. M.D. Hetland, J. R. Gallagher, D. J. Daly, D. J. Hassett, and L. V. Heebink, “Processing of plants used to phytoremediate lead-contaminated sites,” A. Leeson, E. A. Forte, M. K. Banks, and V. S. Magar, Eds., pp. 129–136, Batelle Press.
  147. C. D. Jadia and M. H. Fulekar, “Phytoremediation of heavy metals: recent techniques,” African Journal of Biotechnology, vol. 8, no. 6, pp. 921–928, 2009. View at Google Scholar · View at Scopus
  148. USEPA, “Introduction to phytoremediation,” Tech. Rep. EPA 600/R-99/107, United States Environmental Protection Agency, Office of Research and Development, Cincinnati, Ohio, USA, 2000. View at Google Scholar