Table of Contents
ISRN Toxicology
Volume 2011 (2011), Article ID 450875, 4 pages
http://dx.doi.org/10.5402/2011/450875
Research Article

Promotion of the Toxic Action of Cyclophosphamide by Digestive Tract Luminal Ammonia in Rats

Laboratory of Origin, Institute of Toxicology, Federal Medical Biological Agency, 1, ul. Bekhtereva, St. Petersburg, 192019, Russia

Received 23 April 2011; Accepted 30 May 2011

Academic Editors: C. L. Chern and K. M. Erikson

Copyright © 2011 Jury Ju. Ivnitsky et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. H. J. Wolfgang and M. E. I. Leibbrandt, “Antineoplastic agents,” in Comprehensive Toxicology, vol. 7, pp. 525–547, Cambridge University Press, Cambridge, UK, 1997. View at Google Scholar
  2. P. L. Zinzani, “Salvage chemotherapy in follicular non-Hodgkin's lymphoma: ffocus on tolerability,” Clinical Lymphoma and Myeloma, vol. 7, no. 2, pp. 115–124, 2006. View at Google Scholar · View at Scopus
  3. A. Lorch, C. Kollmannsberger, J. T. Hartmann et al., “Single versus sequential high-dose chemotherapy in patients with relapsed or refractory germ cell tumors: a prospective randomized multicenter trial of the German Testicular Cancer Study Group,” Journal of Clinical Oncology, vol. 25, no. 19, pp. 2778–2784, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Kuçi, Z. Kuçi, H. Latifi-Pupovci et al., “Adult stem cells as an alternative source of multipotential (pluripotential) cells in regenerative medicine,” Current Stem Cell Research and Therapy, vol. 4, no. 2, pp. 107–117, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. G. B. McDonald, J. T. Slattery, M. E. Bouvier et al., “Cyclophosphamide metabolism, liver toxicity, and mortality following hematopoietic stem cell transplantation,” Blood, vol. 101, no. 5, pp. 2043–2048, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. A. S. Saratikov, A. V. Ratjkin, V. N. Frolov, and V. S. Chuchalin, “Correction of cyclophosphan toxicity by polyphenolic hepatoprotectors,” Bulletin of Siberian Medicine, vol. 1, pp. 52–56, 2004 (Russian). View at Google Scholar
  7. M. Haubitz, “Acute and long-term toxicity of cyclophosphamide,” Transplantationsmedizin, vol. 19, no. 2, pp. 26–31, 2007. View at Google Scholar · View at Scopus
  8. J. Hankins, S. Bessman, A. Mansberger, and R. A. Cowley, “The origin and utilization of ammonia in shock: a comparison of the levels of blood ammonia in the portal and systemic circulation during shock induced by the fine technique,” Bulletin de la Société Internationale de Chirurgie, vol. 18, no. 1, pp. 20–30, 1959. View at Google Scholar
  9. M. Imler and D. Schlienger, “Hepatic origin of hyperammonemia induced by shock in normal rats,” Archives Internationales de Physiologie et de Biochimie, vol. 85, no. 1, pp. 101–115, 1977. View at Google Scholar · View at Scopus
  10. E. E. Brown and H. K. Wright, “Internal fluid shifts secondary to intraperitoneal nitrogen mustard,” Surgical Forum, vol. 15, pp. 386–387, 1964. View at Google Scholar
  11. J. F. Barrett, “A modified Nessler's reagent for the micro-determination of urea in tungstic acid blood filtrate,” Biochemical Journal, vol. 29, pp. 2442–2245, 1935. View at Google Scholar
  12. T. P. Whitehead and S. R. Whittaker, “A method for the determination of glutamine in cerebrospinal fluid and the results in hepatic coma,” Journal of Clinical Pathology, vol. 8, no. 1, pp. 81–84, 1955. View at Google Scholar · View at Scopus
  13. P. B. Soeters and P. A. M. van Leeuwen, “Ammonia and glutamine metabolism of the intestine. The effect of lactulose and neomycin,” Infusionstherapie und Klinische Ernahrung, vol. 13, no. 4, pp. 186–190, 1986. View at Google Scholar
  14. G. Bongaerts, R. Severijnen, and H. Timmerman, “Effect of antibiotics, prebiotics and probiotics in treatment for hepatic encephalopathy,” Medical Hypotheses, vol. 64, no. 1, pp. 64–68, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. W. H. Summerskill and E. Wolpert, “Ammonia metabolism in the gut,” American Journal of Clinical Nutrition, vol. 23, no. 5, pp. 633–639, 1970. View at Google Scholar · View at Scopus
  16. C. H. Gips, G. S. Qué, and M. Wibbens-Alberts, “The arterial ammonia curve after oral and intraduodenal loading with ammonium acetate. Absorption in the stomach,” Netherlands Journal of Medicine, vol. 16, no. 1, pp. 14–17, 1973. View at Google Scholar · View at Scopus
  17. S. M. Mossberg and G. Ross, “Ammonia movement in the small intestine: preferential transport by the ileum,” Journal of Clinical Investigation, vol. 46, no. 4, pp. 490–498, 1967. View at Google Scholar · View at Scopus
  18. S. K. Singh, H. J. Binder, J. P. Geibel, and W. F. Boron, “An apical permeability barrier to NH3/NH4+ in isolated, perfused colonie crypts,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 25, pp. 11573–11577, 1995. View at Google Scholar · View at Scopus
  19. G. P. Dobson, R. L. Veech, J. V. Passonneau, and M. T. Huang, “In vivo portal-hepatic venous gradients of glycogenic precursors and incorporation of D-[3-3H]glucose into liver glycogen in the awake rat,” Journal of Biological Chemistry, vol. 265, no. 27, pp. 16350–16357, 1990. View at Google Scholar · View at Scopus
  20. V. L. Rejniuk, T. V. Schäfer, and JuJu Ivnitsky, “Promotion of ethanol lethal action by ammonia in rats,” Bulletin of Experimental Biology and Medicine, vol. 145, pp. 688–691, 2008 (Russian). View at Google Scholar
  21. K. Kehe and L. Szinicz, “Medical aspects of sulphur mustard poisoning,” Toxicology, vol. 214, no. 3, pp. 198–209, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Kim, W. Lee, and N. Benevenga, “Feeding diets containing high levels of milk products or cellulose decrease urease activity and ammonia production in rat intestine,” Journal of Nutrition, vol. 128, no. 7, pp. 1186–1191, 1998. View at Google Scholar · View at Scopus
  23. E. S. G. Barron, G. R. Bartlett, Z. B. Miller, J. Meyer, and J. E. Seegmiller, “The effect of nitrogen mustard on enzymes and tissue metabolism. II. The effect on tissue metabolism,” The Journal of Experimental Medicine, vol. 87, pp. 503–519, 1947. View at Google Scholar
  24. M. Balali-Mood and M. Hefazi, “The pharmacology, toxicology, and medical treatment of sulphur mustard poisoning,” Fundamental and Clinical Pharmacology, vol. 19, no. 3, pp. 297–315, 2005. View at Publisher · View at Google Scholar
  25. S. F. Alexander, “Medical report of the bari harbor mustard casualties,” The Military Surgeon, vol. 101, pp. 2–17, 1974. View at Google Scholar
  26. N. Haghighat and D. W. McCandless, “Effect of ammonium chloride on energy metabolism of astrocytes and C6-glioma cells in vitro,” Metabolic Brain Disease, vol. 12, no. 4, pp. 287–298, 1997. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Korkmaz, H. Jaren, T. Topal, and S. Oter, “Molecular targets against mustard toxicity: implication of cell surface receptors, peroxynitrite production, and PARP activation,” Archives of Toxicology, vol. 80, no. 10, pp. 662–670, 2006. View at Publisher · View at Google Scholar