Table of Contents
ISRN Pharmacology
Volume 2011, Article ID 451682, 6 pages
http://dx.doi.org/10.5402/2011/451682
Research Article

Effect of Rosmarinic and Caffeic Acids on Inflammatory and Nociception Process in Rats

1Departamento de Bioquímica, Universidade Federal de Pelotas, Campus Capão do Leão S/N Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
2Instituto de Ciências da Saúde, Universidade Feevale, RS 239, 2755, 93352-000 Novo Hamburgo, RS, Brazil
3Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 107, 90046-900 Porto Alegre, RS, Brazil
4Universidade Luterana do Brasil, Curso de Farmácia, Rua Miguel Tostes 101, 92420-280 Canoas, RS, Brazil
5Fundação Estadual de Produção e Pesquisa em Saúde/Centro de Desenvolvimento Científico e Tecnológico, Avenue Ipiranga, 5400, 90610-000 Porto Alegre, RS, Brazil

Received 12 January 2011; Accepted 10 February 2011

Academic Editor: S. R. Chen

Copyright © 2011 Giovana Duzzo Gamaro et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Rosmarinic acid is commonly found in species of the Boraginaceae and the subfamily Nepetoideae (Lamiaceae). It has a number of interesting biological activities, for example, antiviral, antibacterial, anti-inflammatory, and antioxidant. The aim of the present study was to investigate the effect of the i.p. administration of caffeic and rosmarinic acid (5 and 10 mg/kg) on anti-inflammatory and nociceptive response using carrageenan-induced pleurisy model and tail-flick assay in rats. The analysis of cells in the pleural exudates revealed a reduction of 66% of the number of leukocytes that migrated to the pleural cavity in the animals treated with 5 mg/kg caffeic acid, and of 92.9% for the animals treated with 10 mg/kg in comparison with the control group. These exudates showed a balanced distribution of polymorphonuclear (PMN) and mononuclear (MN) cells, differently from the control group, in which PMN cells were predominant. The analysis to tail-flick latency was increased in the group treated with 10 mg/kg caffeic acid characterizing a nociceptive response. While there was no difference between control group and animals treated with rosmarinic.