`ISRN Mathematical AnalysisVolume 2011, Article ID 452689, 21 pageshttp://dx.doi.org/10.5402/2011/452689`
Research Article

## Linearization of Two Second-Order Ordinary Differential Equations via Fiber Preserving Point Transformations

School of Mathematics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand

Received 1 July 2011; Accepted 4 August 2011

Copyright Â© 2011 Sakka Sookmee and Sergey V. Meleshko. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. S. Lie, â€śKlassifikation und integration von gewohnlichen differential gleichungen zwischen x, y, die eine gruppe von transformationen gestatten. III,â€ť Archiv for Mathematik og Naturvidenskab, vol. 8, no. 4, pp. 371â€“427, (1883), reprinted in Lie's Gessammelte Abhandlungen 5, paper XIY, pp. 362â€“427, 1924.
2. R. Liouville, â€śSur les invariants de certaines equations differentielles et sur leurs applications,â€ť Journal de l'Ecole Polytechnique, vol. 59, pp. 7â€“76, 1889.
3. A. M. Tresse, DĂ©termination des Invariants Ponctuels de L'Ă©quation DiffĂ©rentielle Ordinaire du Second Ordre yâ€ł = Ď‰ (x, y, yâ€˛), Preisschriften der FĂĽrstlichen Jablonowski'schen Gesellschaft XXXII, Leipzig, S.Herzel, 1896.
5. S.-S. Chern, â€śThe geometry of the differential equation ${y}^{â€´}=f\left(x,y,{y}^{â€˛},{y}^{â€ł}\right)$,â€ť National Tsing Hua University, vol. 4, pp. 97â€“111, 1940.
6. G. Grebot, â€śThe characterization of third order ordinary differential equations admitting a transitive fiber-preserving point symmetry group,â€ť Journal of Mathematical Analysis and Applications, vol. 206, no. 2, pp. 364â€“388, 1997.
7. S. Neut and M. Petitot, â€śLa gĂ©omĂ©trie de l'Ă©quation ${y}^{â€´}=f\left(x,y,{y}^{â€˛},{y}^{â€ł}\right)$,â€ť Comptes Rendus de L'AcadĂ©mie des Sciences Paris, vol. 335, no. 6, pp. 515â€“518, 2002.
8. N. Euler, T. Wolf, P. G. L. Leach, and M. Euler, â€śLinearisable third-order ordinary differential equations and generalised Sundman transformations: the case ${X}^{â€´}=0$,â€ť Acta Applicandae Mathematicae, vol. 76, no. 1, pp. 89â€“115, 2003.
9. N. Euler and M. Euler, â€śSundman symmetries of nonlinear second-order and third-order ordinary differential equations,â€ť Journal of Nonlinear Mathematical Physics, vol. 11, no. 3, pp. 399â€“421, 2004.
10. N. H. Ibragimov and S. V. Meleshko, â€śLinearization of third-order ordinary differential equations,â€ť Archives of ALGA, vol. 1, pp. 71â€“92, 2004.
11. N. H. Ibragimov and S. V. Meleshko, â€śLinearization of third-order ordinary differential equations by point and contact transformations,â€ť Journal of Mathematical Analysis and Applications, vol. 308, no. 1, pp. 266â€“289, 2005.
12. S. V. Meleshko, â€śOn linearization of third-order ordinary differential equations,â€ť Journal of Physics A, vol. 39, no. 49, pp. 15135â€“15145, 2006.
13. N. H. Ibragimov, S. V. Meleshko, and S. Suksern, â€śLinearization of fourth-order ordinary differential equations by point transformations,â€ť Acta Applicandae Mathematicae, vol. 23, no. 41, Article ID 235206, 2008.
14. S. Suksern, N. H. Ibragimov, and S. V. Meleshko, â€śCriteria for fourth-order ordinary differential equations to be linearizable by contact transformations,â€ť Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 6, pp. 2619â€“2628, 2009.
15. W. Nakpim and S. V. Meleshko, â€śLinearization of third-order ordinary differential equations by generalized Sundman transformations: the case ${X}^{â€´}+\mathrm{Î±}X=0$,â€ť Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 7, pp. 1717â€“1723, 2010.
16. W. Nakpim and S. V. Meleshko, â€śLinearization of second-order ordinary differential equations by generalized Sundman transformations,â€ť Symmetry, Integrability and Geometry, vol. 6, p. 51, 2010.
17. S. V. Meleshko, Methods for Constructing Exact Solutions of Partial Differential Equations, Springer, New York, NY, USA, 2005.
18. A. V. Aminova and N. A.-M. Aminov, â€śProjective geometry of systems of second-order differential equations,â€ť Sbornik, vol. 197, no. 7, pp. 951â€“955, 2006.
19. Soh C. Wafo and F. M. Mahomed, â€śLinearization criteria for a system of second-order ordinary differential equations,â€ť International Journal of Non-Linear Mechanics, vol. 36, no. 4, pp. 671â€“677, 2001.
20. F. M. Mahomed and A. Qadir, â€śLinearization criteria for a system of second-order quadratically semi-linear ordinary differential equations,â€ť Nonlinear Dynamics, vol. 48, no. 4, pp. 417â€“422, 2007.
21. S. Sookmee, Invariants of the equivalence group of a system of second-order ordinary differential equations, M.Sc. thesis, Nakhon Ratchasima, Thailand, 2005.
22. S. Sookmee and S. V. Meleshko, â€śConditions for linearization of a projectable system of two second-order ordinary differential equations,â€ť Journal of Physics A, vol. 41, no. 40, Article ID 402001, 7 pages, 2008.
23. S. Neut, M. Petitot, and R. Dridi, â€śĂ‰lie Cartan's geometrical vision or how to avoid expression swell,â€ť Journal of Symbolic Computation, vol. 44, no. 3, pp. 261â€“270, 2009.
24. Y. Yu. Bagderina, â€śLinearization criteria for a system of two second-order ordinary differential equations,â€ť Journal of Physics A, vol. 43, no. 46, Article ID 465201, 2010.